Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Цитогенетические особенности межродовых амфидиплоидов и геномно-замещенных форм пшеницы

https://doi.org/10.18699/vjgb-24-80

Аннотация

Синтетические межродовые гибриды (амфидиплоиды) и геномно-замещенные формы пшеницы – важный источник для переноса хозяйственно ценных генов от диких видов в геном Triticum aestivum L. Их используют как для решения теоретических задач, так и в практических целях для получения дополненных или замещенных линий, а также для индукции пшенично-чужеродных транслокаций с помощью облучения или негомологичной конъюгации хромосом. Хромосомный и геномный состав аллополиплоидных форм обычно верифицируется в ранних гибридных поколениях, часто дальнейшая судьба этих гибридов остается неизученной. В настоящей работе с помощью методов С-дифференциального окрашивания хромосом по Гимза и флуоресцентной гибридизации in situ (FISH) с ДНК-зондами pAs1 и pSc119.2 мы провели исследование кариотипов пяти гекса- (2n = 6x = 42) и октаплоидных (2n = 8x = 56) геномно-дополненных амфидиплоидов пшеницы с отдельными видами из родов Aegilops, Haynaldia и Hordeum, а также шести гексаплоидных пшенично-эгилопсных геномно-замещенных форм, полученных более 40 лет назад и поддерживаемых в коллекциях разных научноисследовательских учреждений. Показано, что большинство исследованных форм цитогенетически стабильны, однако Авродес (геном BBAASS) – гексаплоидный геномно-замещенный гибрид пшеницы и Ae. speltoides, расщеплялся по хромосомному составу после многих репродукций. Хромосомный анализ не подтвердил ожидаемого геномного состава геномно-замещенной форма Авротата, у которой вместо заявленного N-генома от Ae. uniaristata Vis. обнаружен D-геном. В данной работе показано, что октаплоидные формы проходят через более сложные преобразования геномов, чем гексаплоидные: в двух исследованных предположительно октаплоидных амфидиплоидах АD 7, АD 7147 произошла редукция числа хромосом до гексаплоидного уровня. У  обеих форм были утрачены семь пар хромосом из разных родительских субгеномов, представляющих все семь гомеологических групп. В результате у них сформировался смешанный (гибридный) геном, состоящий из уникальной комбинации хромосом нескольких родительских субгеномов.

Об авторах

Е. Д. Бадаева
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Россия

Москва



Р. О. Давоян
Национальный центр зерна им. П. П. Лукьяненко
Россия

Краснодар



Н. А. Терещенко
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Россия

Москва



Е. В. Лялина
Институт общей генетики им. Н.И. Вавилова Российской академии наук
Россия

Москва



С. А. Зощук
Институт молекулярной биологии им. В. А. Энгельгардта Российской академии наук
Россия

Москва



Н. П. Гончаров
Федеральный исследовательский центр, Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Aberkane H., Payne T., Kishi M., Smale M., Amri A., Jamora N. Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat. Food Secur. 2020;12(5):1017- 1033. DOI 10.1007/s12571-020-01051-w

2. Adonina I.G., Goncharov N.P., Badaeva E.D., Sergeeva E.M., Petrash N.V., Salina E.A. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp. Cytogenet. 2015;9(4):533-547. DOI 10.3897/CompCytogen.v9i4.5120

3. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192(1-2):117-145. DOI 10.1007/BF00985912

4. Badaeva E.D., Amosova A.V., Muravenko O.V., Samatadze T.E., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst. Evol. 2002;231(1-4):163-190. DOI 10.1007/s006060200018

5. Badaeva E.D., Dedkova O.S., Koenig J., Bernard S., Bernard M. Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor. Appl. Genet. 2008;117(5):803-811. DOI 10.1007/s00122-008-0821-4

6. Badaeva E.D., Dedkova O.S., Zoshchuk S.A., Amosova A.V., Reader S., Bernard M., Zelenin A.V. Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res. 2011;19(4):541-548. DOI 10.1007/s10577-011-9211-x

7. Badaeva E.D., Amosova A.V., Goncharov N.P., Macas J., Ruban A.S., Grechishnikova I.V., Zoshchuk S.A., Houben A. A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet. Genome Res. 2015a;146(1):71-79. DOI 10.1159/000433458

8. Badaeva E.D., Dedkova O.S., Pukhalskyi V.A., Zelenin A.V. Chromosomal changes over the course of polyploid wheat evolution and domestication. In: Ogihara Y., Takumi S., Handa H. (Eds) Advances in Wheat Genetics: From Genome to Field. Tokyo: Springer, 2015b: 83-89. DOI 10.1007/978-4-431-55675-6_9

9. Badaeva E.D., Ruban A.S., Aliyeva-Schnorr L., Municio C., Hesse S., Houben A. In situ hybridization to plant chromosomes. In: Liehr T. (Ed.) Fluorescence In Situ Hybridization (FISH): Application guide. Ser.: Springer Protocols Handbooks. Berlin; Heidelberg: Springer, 2017;477-494. DOI 10.1007/978-3-662-52959-1_49

10. Badaeva E.D., Ruban A.S., Shishkina A.A., Sibikeev S.N., Druzhin A.E., Surzhikov S.A., Dragovich A.Yu. Genetic classification of Aegilops columnaris Zhuk. (2n = 4x = 28, Uc Uc Xc Xc ) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome. 2018;61(2):131-143. DOI 10.1139/gen-2017-0186

11. Bariana H.S., McIntosh R.A. Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica. 1994; 76(1):53-61. DOI 10.1007/BF00024020

12. Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545-560. DOI 10.1016/0092-8674(80)90529-2

13. Bespalova L.A. Broadening the genepool as the major factor of the third Green Revolution in wheat breeding. Vestnik Rossiskoi Akademii Nauk = Herald of the Russian Academy of Sciences. 2015; 85(1):9-11. DOI 10.7868/S086958731501003X (in Russian)

14. Biodiversity. Facts and figures on food and biodiversity. 2024 [cited 2024, 11 July]. Available from: https://idrc-crdi.ca/en/research-inaction/facts-figures-food-andbiodiversity

15. Blüthner W.-D., Schubert V., Mettin D. Instability in amphiploids and backcross derivatives of a Triticum aestivum × Ae. caudata cross. In: Miller T.E., Koebner R.M.D. (Eds) Proceedings of the 7th International Wheat Genetics Symposium. Cambridge,1988;209-213

16. Cabrera A., Friebe B., Jiang J., Gill B.S. Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome. 1995;38(3):435-442. DOI 10.1139/g95-057

17. Danilova T.V., Akhunova A.R., Akhunov E.D., Friebe B., Gill B.S. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J. 2017;92(2):317- 330. DOI 10.1111/tpj.13657

18. Davoyan E.R., Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zubanova Y.S., Kravchenko A.M., Zinchenko A.N. Identification of a leafrust resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat. Russ. J. Genet. Appl. Res. 2012;2(4):325-329. DOI 10.1134/S2079059712040041

19. Davoyan E.R., Bebyakina I.V., Davoyan R.O., Boldakov D.M., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N., Zubanova Yu.S. A study of bread wheat lines from crosses with the synthetic form Avrodes in regard to their yellow rust resistance. Biotehnologiya i Selektsiya Rastenii = Plant Biotechnology and Breeding. 2023;6(3): 25-34. DOI 10.30901/2658-6266-2023-3-o4 (in Russian)

20. Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet. Appl. Res. 2012;2(6):480-485. DOI 10.1134/S2079059712060044

21. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Zubanova Yu.S., Boldakov D.M., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N. The development and study of common wheat introgression lines derived from the synthetic form RS7. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):827-835. DOI 10.18699/VJ19.556 (in Russian)

22. Davoyan R.O., Zhirov E.G. Genome-substituted form Avrodes as the source of soft wheat plant resistance to leaf rust and powdery mildew. Selkohozyaistvennaya Biologiya = Agricultural Biology. 1995; 30(1):98-101 (in Russian)

23. De Caro S., Venezia A., Di Stasio L., Danzi D., Pignone D., Mamone G., Iakomino G. Tritordeum: promising сultivars to improve health. Foods. 2024;13(5):661. DOI 10.3390/foods13050661

24. Delibes A., Lopez-Braña I., Mena M., García-Olmedo F. Genetic transfer of resistance to powdery mildew and of an associated biochemical marker from Aegilops ventricosa to hexaploid wheat. Theor. Appl. Genet. 1987;73(4):605-608. DOI 10.1007/BF00289201

25. Delibes A., Doussinault G., Mena M., López-Braña I., García-Olmedo F. Eyespot resistance gene Pch-1 from Aegilops ventricosa is associated with a different chromosome in wheat line H-93-70 than the resistance factor in “Roazon” wheat. Theor. Appl. Genet. 1988; 76(4):573-576. DOI 10.1007/BF00260911

26. Dhaliwal H.S., Friebe B., Gill K.S., Gill B.S. Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat. Theor. Appl. Genet. 1990;79(6):769-774. DOI 10.1007/BF00224243

27. Dosba F., Doussinault G. Obtention of wheat lines with favorable agronomical characteristics of Aegilops ventricosa. Ann. Amelior. Plant. 1978;28(1):27-44

28. Dosba F., Tanguy A.M., Rivoal R. Extraction, identification and utilization of the addition lines T. aestivum - Ae. ventricosa. In: Ramanujan S. (Ed.) Proceedings of the 5th International Wheat Genetics Symposium, 23–28 Febr. New Delhi, 1978;332-337

29. Dubcovsky J., Dvořák J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316(5833): 1862-1866. DOI 10.1126/science.1143986

30. Dvořák J., Luo M.C., Yang Z.L., Zhang H.B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 1998;97(4):657-670. DOI 10.1007/s001220050942

31. Dvořák J., Deal K.R., Luo M.C. Discovery and mapping of wheat Ph1 suppressors. Genetics. 2006;174(1):17-27. DOI 10.1534/genetics.106.058115

32. Endo T.R., Tsunewaki K. Sterility of common wheat with Aegilops triuncialis cytoplasm. Heredity. 1975;66(1):13-18. DOI 10.1093/oxfordjournals.jhered.a108562

33. Feldman M. Origin of cultivated wheat. In: Bonjean A.P., Angus W.J. (Eds) The World Wheat Book: A history of wheat breeding. London: Intersept Ltd, 2001;3-56

34. Feldman M., Levy A.A. Wheat Evolution and Domestication. Springer: Cham, 2023. DOI 10.1007/978-3-031-30175-9

35. Fernández J.A., Jouve N. Giemsa C-banding of the chromosomes of Hordeum chilense and its amphiploid×Triticum turgidum conv. durum. Zeitschrift fur Pflanzenzuchtung = J. Plant Breed. 1984;93(3): 212-221. DOI 10.1007/BF00032990

36. Friebe B., Schubert V., Blüthner W.D., Hammer K. C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 1992;83(5):589- 596. DOI 10.1007/BF00226902

37. Friebe B., Jiang J., Tuleen N., Gill B.S. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 1995a;90(1):150-156. DOI 10.1007/BF00221010

38. Friebe B., Tuleen N.A., Gill B.S. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor. Appl. Genet. 1995b;91(2):248-254. DOI 10.1007/BF00220885

39. Friebe B., Badaeva E.D., Hammer K., Gill B.S. Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 1996a;202(3):199-210. DOI 10.1007/BF00983382

40. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996b;91(1):59-87. DOI 10.1007/BF00035277

41. Friebe B., Qi L.L., Nasuda S., Zhang P., Tuleen N.A., Gill B.S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 2000;101(1):51-58. DOI 10.1007/s001220051448

42. Garcia-Olmedo F., Delibes A., Sanchez-Monge R. Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. In: Breeding for Disease Resistance and Oat Breeding: Proceedings of the EUCARPIA Cereal Section Meeting, 28 Feb.–1 Mar. Weihenstephan, 1984;6:156-168

43. Gill B.S., Kimber G. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci. USA. 1974;71(4):1247-1249. DOI 10.1073/pnas.71.4.1247

44. Gill B.S., Raupp W.J., Sharma H.C., Browder L.E., Hatchett J.H., Harvey T.L., Moseman J.G., Waines J.G. Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis. 1986;70:553-556. DOI 10.1094/PD-70-553

45. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 1991;34(5):830-839. DOI 10.1139/g95-030

46. Girma E. Genetic erosion of wheat (Triticum spp.): concept, research results and challenges. J. Nat. Sci. Res. 2017;7(23):72-81

47. Goncharov N.P., Boguslavsky R.L., Orlova E.A., Belousova M.Kh., Aminov N.Kh., Konovalov A.A., Kondratenko E.Ya., Gultyaeva E.I. Leaf rust resistance in wheat amphidiploids. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2020;6(3):95-106. DOI 10.18699/Letters2020-6-14 (in Russian)

48. Gong W., Han R., Li H., Song J., Yan H., Li G., Liu A., Cao X., Guo J., Zhai S., Cheng D., Zhao Z., Liu C., Liu J. Agronomic traits and molecular marker identification of wheat–Aegilops caudata addition lines. Front. Plant Sci. 2017;8:1743. DOI 10.3389/fpls.2017.01743

49. Grewal S., Othmeni M., Walker J., Hubbart-Edwards S., Yang C.-y., Scholefield D., Ashling S., Isaac P., King I.P., King J. Development of wheat-Aegilops caudata introgression lines and their characterization using genome-specific KASP markers. Front. Plant Sci. 2020; 11:606. DOI 10.3389/fpls.2020.00606

50. Hirosawa S., Takumi S., Ishii T., Kawahara T., Nakamura C., Mori N. Chloroplast and nuclear DNA variation in common wheat: insight into the origin and evolution of common wheat. Genes Genet. Syst. 2004;79(5):271-282. DOI 10.1266/ggs.79.271

51. Huang D.-h., Lin Z.-s., Chen X., Zhang Z.-y., Chen C.-c., Cheng S.-h., Xin Z.-y. Molecular characterization of a Triticum durum-Haynaldia villosa amphiploid and its derivatives for resistance to Gaeumannomyces graminis var. tritici. Agricult. Sci. China. 2007;6(5):513-521. DOI 10.1016/S1671-2927(07)60077-7

52. Iqbal N., Reader S.M., Caligari P.D.S., Miller T.E. Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor. Appl. Genet. 2000a;101(8):1173-1179. DOI 10.1007/s001220051594

53. Iqbal N., Reader S.M., Caligari P.D.S., Miller T.E. The production and characterization of recombination between chromosome 3N of Aegilops uniaristata and chromosome 3A of wheat. Heredity. 2000b; 84(4):487-492. DOI 10.1046/j.1365-2540.2000.00706.x

54. Islam A.K.M.R., Shepherd K.W. Incorporation of barley chromosomes into wheat. In: Bajaj Y.P.S. (Ed.) Wheat. Biotechnology in Agriculture and Forestry. Berlin: Springer, 1990;128-151. DOI 10.1007/978-3-662-10933-5_8

55. Kashkush K., Feldman M., Levy A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002; 160(4):1651-1659. DOI 10.1093/genetics/160.4.1651

56. Kihara H. Origin of cultivated plants with special reference to wheat. Seiken Ziho. 1975;25/26:1-24

57. King I.P., Miller T.E., Koebner R.M.D. Determination of the transmission frequency of chromosome 4Sl of Aegilops sharonensis in a range of wheat genetic backgrounds. Theor. Appl. Genet. 1991; 81(4):519-523. DOI 10.1007/BF00219443

58. King J., Grewal S., Yang C.-y., Hubbart S.., Scholefield D., Ashling S., Edwards K.J., Allen A.M., Burridge A., Bloor C., Davassi A., da Silva G.J., Chalmers K., King I.P. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 2017;15(2):217-226. DOI 10.1111/pbi.12606

59. King J., Grewal S., Yang C.-y., Hubbart E.S., Scholefield D., Ashling S., Harper J.A., Allen A.M., Edwards K.J., Burridge A.J., King I.P. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann. Bot. 2018;121(2):229- 240. DOI 10.1093/aob/mcx149

60. King J., Newell C., Grewal S., Hubbart-Edwards S., Yang C.-y., Scholefield D., Ashling S., Stride A., King I.P. Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front. Plant Sci. 2019;10:34. DOI 10.3389/fpls.2019.00034

61. Kishii M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019;10:585. DOI 10.3389/fpls.2019.00585

62. Kroupin P.Yu., Divashuk M.G., Karlov G.I Gene resources of perennial wild cereals involved in breeding to improve wheat crop (review). Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 2019;54(3):409-425. DOI 10.15389/agrobiology.2019.3.409eng

63. Kumar A., Kapoor P., Chunduri V., Sharma S., Garg M. Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum). Front. Plant Sci. 2019;10:308. DOI 10.3389/fpls.2019.00308

64. Levy A.A., Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol. J. Linn. Soc. 2004; 82(4):607-613. DOI 10.1111/j.1095-8312.2004.00346.x

65. Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z. An efficient OligoFISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2020;105(4):978-993. DOI 10.1111/TPJ.15081

66. Linc G., Friebe B.R., Kynast R.G., Molnar-Lang M., Köszegi B., Sutka J., Gill B.S. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome. 1999;42(3):497-503. DOI 10.1139/gen42-3-497

67. Linc G., Sepsi A., Molnar-Lang M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet. Genome Res. 2012;136(2):138-144. DOI 10.1159/000334835

68. Liu C., Li G.-R., Sehgal K.S., Jia J.-Q., Yang Z.-J., Friebe B., Gill B.S. Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst. Evol. 2010;288(3-4):149-156. DOI 10.1007/s00606-010-0319-9

69. Liu C., Li G.-R., Gong W.-P., Li G.-Y., Han R., Li H.-S., Song J.-M., LiuA.-F., Cao X.-Y., Chu X.-S., Yang Z.-J., Huang C.-Y., Zhao Z.-D., Liu J.-J. Molecular and cytogenetic characterization of a powdery mildew-resistant wheat-Aegilops mutica partial amphiploid and addition line. Cytogenet. Genome Res. 2015;147(2-3):186-194. DOI 10.1159/000443625

70. Logojan A.A., Molnár-Láng M. Production of Triticum aestivum Aegilops biuncialis chromosome additions. Cereal Res. Commun. 2000;28(3):221-222. DOI 10.1007/BF03543597

71. Luo M.-C., Yang Z.-L., You F.M., Kawahara T., Waines J.G., Dvořák J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 2007;114(6):947-959. DOI 10.1007/s00122-006-0474-0

72. Mahmood Y.A., DeSilva J., King I.P., King J., Foulkes M.J. Leaf photosynthesis traits and associations with biomass and drought tolerance in amphidiploid and ancestral wheat genotypes. Eur. J. Agronomy. 2023;147:126846. DOI 10.1016/j.eja.2023.126846

73. Martín A., Cabrera A. Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding. Cytogenet. Genome Res. 2005;109(1-3):378-384. DOI 10.1159/000082423

74. Martin A., Sanchez-Mongelaguna E. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica. 1982;31(1):261-268. DOI 10.1007/BF00028329

75. Martynov S.P., Dobrotvorskaya T.V., Pukhalskiy V.A. Dynamics of genetic diversity in winter common wheat Tritium aestivum L. cultivars released in Russia from 1929 to 2005. Russ. J. Genet. 2006; 42(10):1137-1147. DOI 10.1134/S1022795406100061

76. Martynov S.P., Dobrotvorskaya T.V., Mitrofanova O.P. Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum aestivum L.). Russ. J. Genet. 2015;51(9):855-862. DOI 10.1134/S1022795415090070

77. McIntosh R.A., Yamazaki Y., Dubkovsky G., Rogers J., Morris C.F., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. The 12th International Wheat Genetics Symposium, 8–13 Sept. 2013. Yokohama, Japan, 2013

78. Miller T.E., Hutchinson J., Chapman V. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor. Appl. Genet. 1982;61(1):27-33. DOI 10.1007/BF00261506

79. Miller T.E., Reader S.M., Mahmood A., Purdie K.A., King I.P. Chromosome 3N of Aegilops uniaristata – a source of tolerance to high levels of aluminium for wheat. In: Li S., Xin Z.Y. (Eds) Proceeding of the 8th International Wheat Genetics Symposium, 20–25 July 1993. Beijing: China Agricult. Sci. Press, 1995;1037-1042

80. Millet E., Manisterski J., Ben-Yehuda P., Distelfeld A., Deek J., Wan A., Chen X., Steffenson B.J. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome. 2014;57(6):309-316. DOI 10.1139/gen-2014-0004

81. Minelli S., Ceccarelli M., Mariani M., De Pace C., Cioninia P.G. Cytogenetics of Triticum × Dasypyrum hybrids and derived lines. Cytogenet. Genome Res. 2005;109(1-3):385-392. DOI 10.1159/000082424

82. Molnár I., Vrána J., Burešová V., Cápal P., FarkasA., Darkó É., CsehA., Kubaláková M., Molnár-Láng M., Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88(3):452-467. DOI 10.1111/tpj.13266

83. Molnár-Láng M., Linc G., Logojan A., Sutka J. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome. 2000;43(6):1045- 1054. DOI 10.1139/gen-43-6-1045

84. Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R., Graner A., Frison E. (Eds) Genomics of Plant Genetic Resources. Vol. 1. Managing, Sequencing and Mining Genetic Resources. New York: Springer, 2014; 255-284

85. Molnár-Láng M., Ceoloni C., Doležel J. (Eds) Alien Introgression in Wheat. Cytogenetics, Molecular Biology, and Genomics. Switzerland: Springer, 2015. DOI 10.1007/978-3-319-23494-6

86. Monneveux P., Zaharieva M., Rekika D. The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C., Nachit M., Di Fonzo N., Araus J.L. (Eds) Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: Ciheam, 2000;71-81

87. Mustafaev I.D., Piralov G.R. Some aspects of interrelations between tetraploid wheat species and Aegilops ventricosa Tausch. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 1981;16(2): 223-228 (in Russian)

88. Olivera P.D., Rouse M.N., Jin Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 2018;9:1719. DOI 10.3389/fpls.2018.01719

89. Olivera P.D., Steffenson B.J. Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany. 2009;87(8): 740-756. DOI 10.1139/B09-040

90. Orlovskaya O.A., Leonova I.N., Adonina I.G., Salina E.A., Khotyleva L.V., Shumny V.K. Molecular cytogenetic analysis of triticale and wheat lines with introgressions of the genetic material of Triticeae tribe species. Russ. J. Genet. Appl. Res. 2016;6(5):527-536. DOI DOI 10.1134/S2079059716050087

91. Özkan H., Levy A.A., Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell. 2001;13(8):1735-1747. DOI 10.1105/tpc.13.8.1735

92. Pace C.D., Vaccino P., Cionini P.G., Pasquini M., Bizzarri M., Qualset C.O. Dasypyrum. In: Cole C. (Ed.) Wild Crop Relatives: Genomic and Breeding Resources Cereals. Berlin: Springer, 2011; 185-292

93. Peng J.H., Sun D., Nevo E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011;28(3):281. DOI 10.1007/s11032-011-9608-4

94. Piralov G.R. The results of hybridization of wheat with aegilops, rye, Haynaldia and wheatgrass. In: Genetics and Breeding in Azerbaijan. Vol. 1. Baku, 1976;136-137 (in Russian)

95. Prieto P., Martin A., Cabrera A. Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas. 2004;141(2):122-127. DOI 10.1111/j.1601-5223.2004.01825.x

96. Prohens J., Gramazio P., Plazas M., Dempewolf H., Kilian B., Díez M.J., Fita A., Herraiz F.J., Rodríguez-Burruezo A., Soler S., Knapp S., Vilanova S. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica. 2017;213(7):158. DOI 10.1007/s10681-017-1938-9

97. Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4(2): 102-109. DOI 10.1007/BF02732107

98. Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., Abrouk M., Martis-Thiele M.M., Kalapos B., Bartoš J., Friebe B., Doležel J., Molnár I. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 2021;12:1136. DOI 10.3389/fpls.2021.689031

99. Said M., Gaál E., Farkas A., Molnár I., Bartoš J., Doležel J., Cabrera A., Endo T.R. Gametocidal genes: from a discovery to the application in wheat breeding. Front. Plant Sci. 2024;15:1396553. DOI 10.3389/fpls.2024.1396553

100. Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163(1):1-19. DOI 10.1007/s10681-007-9624-y

101. Schulz-Schaeffer J., Friebe B. Karyological characterization of a partial amphiploid, Triticum turgidum L. var. durum × Agropyron intermedium (Host) P.B. Euphytica. 1992;62(2):83-88. DOI 10.1007/BF00037932

102. Sharma M., Punya, Gupta B.B. Role of wild relatives for development of climate-resilient varieties. In: Salgotra R.K., Zargar S.M. (Eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Singapore: Springer, 2020;303-314. DOI 10.1007/978-981-15-0156-2_11

103. Sharma S., Schulthess A.W., Bassi F.M., Badaeva E.D., Neumann K., Graner A., Özkan H., Werner P., Knüpffer P., Kilian B. Introducing beneficial alleles from plant genetic resources into the wheat germplasm. Biology. 2021;10(10):982. DOI 10.3390/biology10100982

104. Siddiqui K. Induced mutations in Triticum aegilopoides, Aegilops ventricosa and their synthetic allopolyploid. Hereditas. 2009;73:45-50. DOI 10.1111/j.1601-5223.1973.tb01066.x

105. Siddiqui K., Ingversen J., Køie B. Inheritance of protein patterns in a synthetic allopolyploid of Triticum monococcum (AA) and Aegilops ventricosa (DDMVMV). Hereditas. 2009;72:205-214. DOI 10.1111/j.1601-5223.1972.tb01044.x

106. Tadesse W., Amri A., Ogbonnaya F.C., Sanchez-Garcia M., Sohail Q., Baum M. Wheat. In: Singh M., Upadhyaya H.D. (Eds) Genetic and Genomic Resources for Grain Cereals Improvement. San Diego: Acad. Press, 2016;81-124

107. Tanguy A.-M., Coriton O., Abélard P., Dedryver F., Jahier J. Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome. 2005;48(3):541-546. DOI 10.1139/g05-001

108. Trubacheeva N.V., Efremova T.T., Badaeva E.D., Kravtsova L.A., Belova L.I., Devyatkina E.P., Pershina L.A. Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines. Russ. J. Genet. 2009;45(12):1438-1443. DOI 10.1134/S1022795409120059

109. Tsujimoto H., Tsunewaki K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet. Cytol. 1984;26(1): 78-84. DOI 10.1139/g84-013

110. Tsujimoto H., Tsunewaki K. Gametocidal genes in wheat and its relatives. III. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome. 1988; 30(2):239-244. DOI 10.1139/g88-041

111. Tsunewaki K. Plasmon analysis as the counterpart of genome analysis. In: Jauhar P.P. (Ed.) Methods of Genome Analysis in Plant: Their Merrits and Piffals. Boca Ration: CRC Press, 1996;271-299.

112. Wang J., Luo M.-C., Chen Z., You F.M., Wei Y., Zheng Y., Dvorak J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytologist. 2013;198(3): 925-937. DOI 10.1111/nph.12164

113. Zhang P., Dundas I.S., McIntosh R.A., Xu S.S., Park R.F., Gill B.S., Friebe B. Wheat–Aegilops introgressions. In: Molnár-Láng M., Ceoloni C., Doležel J. (Eds) Alien Introgression in Wheat. Cytogenetics, Molecular Biology, and Genomics. Switzerland: Springer, 2015;221-244. DOI 10.1007/978-3-319-23494-6

114. Zhang W., Zhang R., Feng Y., Bie T., Chen P. Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chin. Sci. Bull. 2013;58(8): 890-897. DOI 10.1007/s11434-012-5598-9

115. Zhirov E.G., Ternovskaya T.K. Genome engineering in wheat. Vestnik Sel’skokhozyaystvennykh Nauk = Herald of Agricultural Sciences. 1984;10:58-66 (in Russian)

116. Zhirov E.G., Ternovskaya T.K. Transfer of the chromosome conferring mildew resistance from Aegilops sharonensis Eig into Triticum aestivum L. Genetika = Genetics (Moscow). 1993;29(4):639-645 (in Russian)

117. Zhukovsky P.M. Studies on hybridization and immunity of plants. Trudy Moskovskoi Selskohozyaistvennoi Akademii imeni K.A. Timirjazeva = Proceedings of the Timiryazev Moscow Agricultural Academy. 1944;6:3-48 (in Russian).


Рецензия

Просмотров: 400


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)