Цитогенетические особенности межродовых амфидиплоидов и геномно-замещенных форм пшеницы
https://doi.org/10.18699/vjgb-24-80
Аннотация
Синтетические межродовые гибриды (амфидиплоиды) и геномно-замещенные формы пшеницы – важный источник для переноса хозяйственно ценных генов от диких видов в геном Triticum aestivum L. Их используют как для решения теоретических задач, так и в практических целях для получения дополненных или замещенных линий, а также для индукции пшенично-чужеродных транслокаций с помощью облучения или негомологичной конъюгации хромосом. Хромосомный и геномный состав аллополиплоидных форм обычно верифицируется в ранних гибридных поколениях, часто дальнейшая судьба этих гибридов остается неизученной. В настоящей работе с помощью методов С-дифференциального окрашивания хромосом по Гимза и флуоресцентной гибридизации in situ (FISH) с ДНК-зондами pAs1 и pSc119.2 мы провели исследование кариотипов пяти гекса- (2n = 6x = 42) и октаплоидных (2n = 8x = 56) геномно-дополненных амфидиплоидов пшеницы с отдельными видами из родов Aegilops, Haynaldia и Hordeum, а также шести гексаплоидных пшенично-эгилопсных геномно-замещенных форм, полученных более 40 лет назад и поддерживаемых в коллекциях разных научноисследовательских учреждений. Показано, что большинство исследованных форм цитогенетически стабильны, однако Авродес (геном BBAASS) – гексаплоидный геномно-замещенный гибрид пшеницы и Ae. speltoides, расщеплялся по хромосомному составу после многих репродукций. Хромосомный анализ не подтвердил ожидаемого геномного состава геномно-замещенной форма Авротата, у которой вместо заявленного N-генома от Ae. uniaristata Vis. обнаружен D-геном. В данной работе показано, что октаплоидные формы проходят через более сложные преобразования геномов, чем гексаплоидные: в двух исследованных предположительно октаплоидных амфидиплоидах АD 7, АD 7147 произошла редукция числа хромосом до гексаплоидного уровня. У обеих форм были утрачены семь пар хромосом из разных родительских субгеномов, представляющих все семь гомеологических групп. В результате у них сформировался смешанный (гибридный) геном, состоящий из уникальной комбинации хромосом нескольких родительских субгеномов.
Об авторах
Е. Д. БадаеваРоссия
Москва
Р. О. Давоян
Россия
Краснодар
Н. А. Терещенко
Россия
Москва
Е. В. Лялина
Россия
Москва
С. А. Зощук
Россия
Москва
Н. П. Гончаров
Россия
Новосибирск
Список литературы
1. Aberkane H., Payne T., Kishi M., Smale M., Amri A., Jamora N. Transferring diversity of goat grass to farmers’ fields through the development of synthetic hexaploid wheat. Food Secur. 2020;12(5):1017- 1033. https://doi.org/10.1007/s12571-020-01051-w
2. Adonina I.G., Goncharov N.P., Badaeva E.D., Sergeeva E.M., Petrash N.V., Salina E.A. (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp. Cytogenet. 2015;9(4):533-547. https://doi.org/10.3897/CompCytogen.v9i4.5120
3. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst. Evol. 1994;192(1-2):117-145. https://doi.org/10.1007/BF00985912
4. Badaeva E.D., Amosova A.V., Muravenko O.V., Samatadze T.E., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst. Evol. 2002;231(1-4):163-190. https://doi.org/10.1007/s006060200018
5. Badaeva E.D., Dedkova O.S., Koenig J., Bernard S., Bernard M. Analysis of introgression of Aegilops ventricosa Tausch. genetic material in a common wheat background using C-banding. Theor. Appl. Genet. 2008;117(5):803-811. https://doi.org/10.1007/s00122-008-0821-4
6. Badaeva E.D., Dedkova O.S., Zoshchuk S.A., Amosova A.V., Reader S., Bernard M., Zelenin A.V. Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res. 2011;19(4):541-548. https://doi.org/10.1007/s10577-011-9211-x
7. Badaeva E.D., Amosova A.V., Goncharov N.P., Macas J., Ruban A.S., Grechishnikova I.V., Zoshchuk S.A., Houben A. A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet. Genome Res. 2015a;146(1):71-79. https://doi.org/10.1159/000433458
8. Badaeva E.D., Dedkova O.S., Pukhalskyi V.A., Zelenin A.V. Chromosomal changes over the course of polyploid wheat evolution and domestication. In: Ogihara Y., Takumi S., Handa H. (Eds) Advances in Wheat Genetics: From Genome to Field. Tokyo: Springer, 2015b: 83-89. https://doi.org/10.1007/978-4-431-55675-6_9
9. Badaeva E.D., Ruban A.S., Aliyeva-Schnorr L., Municio C., Hesse S., Houben A. In situ hybridization to plant chromosomes. In: Liehr T. (Ed.) Fluorescence In Situ Hybridization (FISH): Application guide. Ser.: Springer Protocols Handbooks. Berlin; Heidelberg: Springer, 2017;477-494. https://doi.org/10.1007/978-3-662-52959-1_49
10. Badaeva E.D., Ruban A.S., Shishkina A.A., Sibikeev S.N., Druzhin A.E., Surzhikov S.A., Dragovich A.Yu. Genetic classification of Aegilops columnaris Zhuk. (2n = 4x = 28, Uc Uc Xc Xc ) chromosomes based on FISH analysis and substitution patterns in common wheat × Ae. columnaris introgressive lines. Genome. 2018;61(2):131-143. https://doi.org/10.1139/gen-2017-0186
11. Bariana H.S., McIntosh R.A. Characterisation and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica. 1994; 76(1):53-61. https://doi.org/10.1007/BF00024020
12. Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545-560. https://doi.org/10.1016/0092-8674(80)90529-2
13. Bespalova L.A. Broadening the genepool as the major factor of the third Green Revolution in wheat breeding. Vestnik Rossiskoi Akademii Nauk = Herald of the Russian Academy of Sciences. 2015; 85(1):9-11. https://doi.org/10.7868/S086958731501003X (in Russian)
14. Biodiversity. Facts and figures on food and biodiversity. 2024 [cited 2024, 11 July]. Available from: https://idrc-crdi.ca/en/research-inaction/facts-figures-food-andbiodiversity
15. Blüthner W.-D., Schubert V., Mettin D. Instability in amphiploids and backcross derivatives of a Triticum aestivum × Ae. caudata cross. In: Miller T.E., Koebner R.M.D. (Eds) Proceedings of the 7th International Wheat Genetics Symposium. Cambridge,1988;209-213
16. Cabrera A., Friebe B., Jiang J., Gill B.S. Characterization of Hordeum chilense chromosomes by C-banding and in situ hybridization using highly repeated DNA probes. Genome. 1995;38(3):435-442. https://doi.org/10.1139/g95-057
17. Danilova T.V., Akhunova A.R., Akhunov E.D., Friebe B., Gill B.S. Major structural genomic alterations can be associated with hybrid speciation in Aegilops markgrafii (Triticeae). Plant J. 2017;92(2):317- 330. https://doi.org/10.1111/tpj.13657
18. Davoyan E.R., Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zubanova Y.S., Kravchenko A.M., Zinchenko A.N. Identification of a leafrust resistance gene in species of Aegilops L., synthetic forms, and introgression lines of common wheat. Russ. J. Genet. Appl. Res. 2012;2(4):325-329. https://doi.org/10.1134/S2079059712040041
19. Davoyan E.R., Bebyakina I.V., Davoyan R.O., Boldakov D.M., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N., Zubanova Yu.S. A study of bread wheat lines from crosses with the synthetic form Avrodes in regard to their yellow rust resistance. Biotehnologiya i Selektsiya Rastenii = Plant Biotechnology and Breeding. 2023;6(3): 25-34. https://doi.org/10.30901/2658-6266-2023-3-o4 (in Russian)
20. Davoyan R.O., Bebyakina I.V., Davoyan O.R., Zinchenko A.N., Davoyan E.R., Kravchenko A.M., Zubanova Y.S. The use of synthetic forms in preservation and exploitation of the gene pool of wild common wheat relatives. Russ. J. Genet. Appl. Res. 2012;2(6):480-485. https://doi.org/10.1134/S2079059712060044
21. Davoyan R.O., Bebyakina I.V., Davoyan E.R., Mikov D.S., Zubanova Yu.S., Boldakov D.M., Badaeva E.D., Adonina I.G., Salina E.A., Zinchenko A.N. The development and study of common wheat introgression lines derived from the synthetic form RS7. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2019;23(7):827-835. https://doi.org/10.18699/VJ19.556 (in Russian)
22. Davoyan R.O., Zhirov E.G. Genome-substituted form Avrodes as the source of soft wheat plant resistance to leaf rust and powdery mildew. Selkohozyaistvennaya Biologiya = Agricultural Biology. 1995; 30(1):98-101 (in Russian)
23. De Caro S., Venezia A., Di Stasio L., Danzi D., Pignone D., Mamone G., Iakomino G. Tritordeum: promising сultivars to improve health. Foods. 2024;13(5):661. https://doi.org/10.3390/foods13050661
24. Delibes A., Lopez-Braña I., Mena M., García-Olmedo F. Genetic transfer of resistance to powdery mildew and of an associated biochemical marker from Aegilops ventricosa to hexaploid wheat. Theor. Appl. Genet. 1987;73(4):605-608. https://doi.org/10.1007/BF00289201
25. Delibes A., Doussinault G., Mena M., López-Braña I., García-Olmedo F. Eyespot resistance gene Pch-1 from Aegilops ventricosa is associated with a different chromosome in wheat line H-93-70 than the resistance factor in “Roazon” wheat. Theor. Appl. Genet. 1988; 76(4):573-576. https://doi.org/10.1007/BF00260911
26. Dhaliwal H.S., Friebe B., Gill K.S., Gill B.S. Cytogenetic identification of Aegilops squarrosa chromosome additions in durum wheat. Theor. Appl. Genet. 1990;79(6):769-774. https://doi.org/10.1007/BF00224243
27. Dosba F., Doussinault G. Obtention of wheat lines with favorable agronomical characteristics of Aegilops ventricosa. Ann. Amelior. Plant. 1978;28(1):27-44
28. Dosba F., Tanguy A.M., Rivoal R. Extraction, identification and utilization of the addition lines T. aestivum - Ae. ventricosa. In: Ramanujan S. (Ed.) Proceedings of the 5th International Wheat Genetics Symposium, 23-28 Febr. New Delhi, 1978;332-337
29. Dubcovsky J., Dvořák J. Genome plasticity a key factor in the success of polyploid wheat under domestication. Science. 2007;316(5833): 1862-1866. https://doi.org/10.1126/science.1143986
30. Dvořák J., Luo M.C., Yang Z.L., Zhang H.B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 1998;97(4):657-670. https://doi.org/10.1007/s001220050942
31. Dvořák J., Deal K.R., Luo M.C. Discovery and mapping of wheat Ph1 suppressors. Genetics. 2006;174(1):17-27. https://doi.org/10.1534/genetics.106.058115
32. Endo T.R., Tsunewaki K. Sterility of common wheat with Aegilops triuncialis cytoplasm. Heredity. 1975;66(1):13-18. https://doi.org/10.1093/oxfordjournals.jhered.a108562
33. Feldman M. Origin of cultivated wheat. In: Bonjean A.P., Angus W.J. (Eds) The World Wheat Book: A history of wheat breeding. London: Intersept Ltd, 2001;3-56
34. Feldman M., Levy A.A. Wheat Evolution and Domestication. Springer: Cham, 2023. https://doi.org/10.1007/978-3-031-30175-9
35. Fernández J.A., Jouve N. Giemsa C-banding of the chromosomes of Hordeum chilense and its amphiploid×Triticum turgidum conv. durum. Zeitschrift fur Pflanzenzuchtung = J. Plant Breed. 1984;93(3): 212-221. https://doi.org/10.1007/BF00032990
36. Friebe B., Schubert V., Blüthner W.D., Hammer K. C-banding pattern and polymorphism of Aegilops caudata and chromosomal constitutions of the amphiploid T. aestivum - Ae. caudata and six derived chromosome addition lines. Theor. Appl. Genet. 1992;83(5):589- 596. https://doi.org/10.1007/BF00226902
37. Friebe B., Jiang J., Tuleen N., Gill B.S. Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theor. Appl. Genet. 1995a;90(1):150-156. https://doi.org/10.1007/BF00221010
38. Friebe B., Tuleen N.A., Gill B.S. Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor. Appl. Genet. 1995b;91(2):248-254. https://doi.org/10.1007/BF00220885
39. Friebe B., Badaeva E.D., Hammer K., Gill B.S. Standard karyotypes of Aegilops uniaristata, Ae. mutica, Ae. comosa subspecies comosa and heldreichii (Poaceae). Plant Syst. Evol. 1996a;202(3):199-210. https://doi.org/10.1007/BF00983382
40. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996b;91(1):59-87. https://doi.org/10.1007/BF00035277
41. Friebe B., Qi L.L., Nasuda S., Zhang P., Tuleen N.A., Gill B.S. Development of a complete set of Triticum aestivum-Aegilops speltoides chromosome addition lines. Theor. Appl. Genet. 2000;101(1):51-58. https://doi.org/10.1007/s001220051448
42. Garcia-Olmedo F., Delibes A., Sanchez-Monge R. Transfer of resistance to eyespot disease from Aegilops ventricosa to wheat. In: Breeding for Disease Resistance and Oat Breeding: Proceedings of the EUCARPIA Cereal Section Meeting, 28 Feb.-1 Mar. Weihenstephan, 1984;6:156-168
43. Gill B.S., Kimber G. The Giemsa C-banded karyotype of rye. Proc. Natl. Acad. Sci. USA. 1974;71(4):1247-1249. https://doi.org/10.1073/pnas.71.4.1247
44. Gill B.S., Raupp W.J., Sharma H.C., Browder L.E., Hatchett J.H., Harvey T.L., Moseman J.G., Waines J.G. Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis. 1986;70:553-556. https://doi.org/10.1094/PD-70-553
45. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 1991;34(5):830-839. https://doi.org/10.1139/g95-030
46. Girma E. Genetic erosion of wheat (Triticum spp.): concept, research results and challenges. J. Nat. Sci. Res. 2017;7(23):72-81
47. Goncharov N.P., Boguslavsky R.L., Orlova E.A., Belousova M.Kh., Aminov N.Kh., Konovalov A.A., Kondratenko E.Ya., Gultyaeva E.I. Leaf rust resistance in wheat amphidiploids. Pisma v Vavilovskii Zhurnal Genetiki i Selektsii = Letters to Vavilov Journal of Genetics and Breeding. 2020;6(3):95-106. https://doi.org/10.18699/Letters2020-6-14 (in Russian)
48. Gong W., Han R., Li H., Song J., Yan H., Li G., Liu A., Cao X., Guo J., Zhai S., Cheng D., Zhao Z., Liu C., Liu J. Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front. Plant Sci. 2017;8:1743. https://doi.org/10.3389/fpls.2017.01743
49. Grewal S., Othmeni M., Walker J., Hubbart-Edwards S., Yang C.-y., Scholefield D., Ashling S., Isaac P., King I.P., King J. Development of wheat-Aegilops caudata introgression lines and their characterization using genome-specific KASP markers. Front. Plant Sci. 2020; 11:606. https://doi.org/10.3389/fpls.2020.00606
50. Hirosawa S., Takumi S., Ishii T., Kawahara T., Nakamura C., Mori N. Chloroplast and nuclear DNA variation in common wheat: insight into the origin and evolution of common wheat. Genes Genet. Syst. 2004;79(5):271-282. https://doi.org/10.1266/ggs.79.271
51. Huang D.-h., Lin Z.-s., Chen X., Zhang Z.-y., Chen C.-c., Cheng S.-h., Xin Z.-y. Molecular characterization of a Triticum durum-Haynaldia villosa amphiploid and its derivatives for resistance to Gaeumannomyces graminis var. tritici. Agricult. Sci. China. 2007;6(5):513-521. https://doi.org/10.1016/S1671-2927(07)60077-7
52. Iqbal N., Reader S.M., Caligari P.D.S., Miller T.E. Characterization of Aegilops uniaristata chromosomes by comparative DNA marker analysis and repetitive DNA sequence in situ hybridization. Theor. Appl. Genet. 2000a;101(8):1173-1179. https://doi.org/10.1007/s001220051594
53. Iqbal N., Reader S.M., Caligari P.D.S., Miller T.E. The production and characterization of recombination between chromosome 3N of Aegilops uniaristata and chromosome 3A of wheat. Heredity. 2000b; 84(4):487-492. https://doi.org/10.1046/j.1365-2540.2000.00706.x
54. Islam A.K.M.R., Shepherd K.W. Incorporation of barley chromosomes into wheat. In: Bajaj Y.P.S. (Ed.) Wheat. Biotechnology in Agriculture and Forestry. Berlin: Springer, 1990;128-151. https://doi.org/10.1007/978-3-662-10933-5_8
55. Kashkush K., Feldman M., Levy A.A. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics. 2002; 160(4):1651-1659. https://doi.org/10.1093/genetics/160.4.1651
56. Kihara H. Origin of cultivated plants with special reference to wheat. Seiken Ziho. 1975;25/26:1-24
57. King I.P., Miller T.E., Koebner R.M.D. Determination of the transmission frequency of chromosome 4Sl of Aegilops sharonensis in a range of wheat genetic backgrounds. Theor. Appl. Genet. 1991; 81(4):519-523. https://doi.org/10.1007/BF00219443
58. King J., Grewal S., Yang C.-y., Hubbart S.., Scholefield D., Ashling S., Edwards K.J., Allen A.M., Burridge A., Bloor C., Davassi A., da Silva G.J., Chalmers K., King I.P. A step change in the transfer of interspecific variation into wheat from Amblyopyrum muticum. Plant Biotechnol. J. 2017;15(2):217-226. https://doi.org/10.1111/pbi.12606
59. King J., Grewal S., Yang C.-y., Hubbart E.S., Scholefield D., Ashling S., Harper J.A., Allen A.M., Edwards K.J., Burridge A.J., King I.P. Introgression of Aegilops speltoides segments in Triticum aestivum and the effect of the gametocidal genes. Ann. Bot. 2018;121(2):229- 240. https://doi.org/10.1093/aob/mcx149
60. King J., Newell C., Grewal S., Hubbart-Edwards S., Yang C.-y., Scholefield D., Ashling S., Stride A., King I.P. Development of stable homozygous wheat/Amblyopyrum muticum (Aegilops mutica) introgression lines and their cytogenetic and molecular characterization. Front. Plant Sci. 2019;10:34. https://doi.org/10.3389/fpls.2019.00034
61. Kishii M. An update of recent use of Aegilops species in wheat breeding. Front. Plant Sci. 2019;10:585. https://doi.org/10.3389/fpls.2019.00585
62. Kroupin P.Yu., Divashuk M.G., Karlov G.I Gene resources of perennial wild cereals involved in breeding to improve wheat crop (review). Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 2019;54(3):409-425. https://doi.org/10.15389/agrobiology.2019.3.409eng
63. Kumar A., Kapoor P., Chunduri V., Sharma S., Garg M. Potential of Aegilops sp. for improvement of grain processing and nutritional quality in wheat (Triticum aestivum). Front. Plant Sci. 2019;10:308. https://doi.org/10.3389/fpls.2019.00308
64. Levy A.A., Feldman M. Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol. J. Linn. Soc. 2004; 82(4):607-613. https://doi.org/10.1111/j.1095-8312.2004.00346.x
65. Li G., Zhang T., Yu Z., Wang H., Yang E., Yang Z. An efficient OligoFISH painting system for revealing chromosome rearrangements and polyploidization in Triticeae. Plant J. 2020;105(4):978-993. https://doi.org/10.1111/TPJ.15081
66. Linc G., Friebe B.R., Kynast R.G., Molnar-Lang M., Köszegi B., Sutka J., Gill B.S. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome. 1999;42(3):497-503. https://doi.org/10.1139/gen42-3-497
67. Linc G., Sepsi A., Molnar-Lang M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet. Genome Res. 2012;136(2):138-144. https://doi.org/10.1159/000334835
68. Liu C., Li G.-R., Sehgal K.S., Jia J.-Q., Yang Z.-J., Friebe B., Gill B.S. Genome relationships in the genus Dasypyrum: evidence from molecular phylogenetic analysis and in situ hybridization. Plant Syst. Evol. 2010;288(3-4):149-156. https://doi.org/10.1007/s00606-010-0319-9
69. Liu C., Li G.-R., Gong W.-P., Li G.-Y., Han R., Li H.-S., Song J.-M., LiuA.-F., Cao X.-Y., Chu X.-S., Yang Z.-J., Huang C.-Y., Zhao Z.-D., Liu J.-J. Molecular and cytogenetic characterization of a powdery mildew-resistant wheat-Aegilops mutica partial amphiploid and addition line. Cytogenet. Genome Res. 2015;147(2-3):186-194. https://doi.org/10.1159/000443625
70. Logojan A.A., Molnár-Láng M. Production of Triticum aestivum Aegilops biuncialis chromosome additions. Cereal Res. Commun. 2000;28(3):221-222. https://doi.org/10.1007/BF03543597
71. Luo M.-C., Yang Z.-L., You F.M., Kawahara T., Waines J.G., Dvořák J. The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor. Appl. Genet. 2007;114(6):947-959. https://doi.org/10.1007/s00122-006-0474-0
72. Mahmood Y.A., DeSilva J., King I.P., King J., Foulkes M.J. Leaf photosynthesis traits and associations with biomass and drought tolerance in amphidiploid and ancestral wheat genotypes. Eur. J. Agronomy. 2023;147:126846. https://doi.org/10.1016/j.eja.2023.126846
73. Martín A., Cabrera A. Cytogenetics of Hordeum chilense: current status and considerations with reference to breeding. Cytogenet. Genome Res. 2005;109(1-3):378-384. https://doi.org/10.1159/000082423
74. Martin A., Sanchez-Mongelaguna E. Cytology and morphology of the amphiploid Hordeum chilense × Triticum turgidum conv. durum. Euphytica. 1982;31(1):261-268. https://doi.org/10.1007/BF00028329
75. Martynov S.P., Dobrotvorskaya T.V., Pukhalskiy V.A. Dynamics of genetic diversity in winter common wheat Tritium aestivum L. cultivars released in Russia from 1929 to 2005. Russ. J. Genet. 2006; 42(10):1137-1147. https://doi.org/10.1134/S1022795406100061
76. Martynov S.P., Dobrotvorskaya T.V., Mitrofanova O.P. Genealogical analysis of the use of aegilops (Aegilops L.) genetic material in wheat (Triticum aestivum L.). Russ. J. Genet. 2015;51(9):855-862. https://doi.org/10.1134/S1022795415090070
77. McIntosh R.A., Yamazaki Y., Dubkovsky G., Rogers J., Morris C.F., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. The 12th International Wheat Genetics Symposium, 8-13 Sept. 2013. Yokohama, Japan, 2013
78. Miller T.E., Hutchinson J., Chapman V. Investigation of a preferentially transmitted Aegilops sharonensis chromosome in wheat. Theor. Appl. Genet. 1982;61(1):27-33. https://doi.org/10.1007/BF00261506
79. Miller T.E., Reader S.M., Mahmood A., Purdie K.A., King I.P. Chromosome 3N of Aegilops uniaristata - a source of tolerance to high levels of aluminium for wheat. In: Li S., Xin Z.Y. (Eds) Proceeding of the 8th International Wheat Genetics Symposium, 20-25 July 1993. Beijing: China Agricult. Sci. Press, 1995;1037-1042
80. Millet E., Manisterski J., Ben-Yehuda P., Distelfeld A., Deek J., Wan A., Chen X., Steffenson B.J. Introgression of leaf rust and stripe rust resistance from Sharon goatgrass (Aegilops sharonensis Eig) into bread wheat (Triticum aestivum L.). Genome. 2014;57(6):309-316. https://doi.org/10.1139/gen-2014-0004
81. Minelli S., Ceccarelli M., Mariani M., De Pace C., Cioninia P.G. Cytogenetics of Triticum × Dasypyrum hybrids and derived lines. Cytogenet. Genome Res. 2005;109(1-3):385-392. https://doi.org/10.1159/000082424
82. Molnár I., Vrána J., Burešová V., Cápal P., FarkasA., Darkó É., CsehA., Kubaláková M., Molnár-Láng M., Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88(3):452-467. https://doi.org/10.1111/tpj.13266
83. Molnár-Láng M., Linc G., Logojan A., Sutka J. Production and meiotic pairing behaviour of new hybrids of winter wheat (Triticum aestivum) × winter barley (Hordeum vulgare). Genome. 2000;43(6):1045- 1054. https://doi.org/10.1139/gen-43-6-1045
84. Molnár-Láng M., Molnár I., Szakács É., Linc G., Bedö Z. Production and molecular cytogenetic identification of wheat-alien hybrids and introgression lines. In: Tuberosa R., Graner A., Frison E. (Eds) Genomics of Plant Genetic Resources. Vol. 1. Managing, Sequencing and Mining Genetic Resources. New York: Springer, 2014; 255-284
85. Molnár-Láng M., Ceoloni C., Doležel J. (Eds) Alien Introgression in Wheat. Cytogenetics, Molecular Biology, and Genomics. Switzerland: Springer, 2015. https://doi.org/10.1007/978-3-319-23494-6
86. Monneveux P., Zaharieva M., Rekika D. The utilisation of Triticum and Aegilops species for the improvement of durum wheat. In: Royo C., Nachit M., Di Fonzo N., Araus J.L. (Eds) Durum Wheat Improvement in the Mediterranean Region: New Challenges. Zaragoza: Ciheam, 2000;71-81
87. Mustafaev I.D., Piralov G.R. Some aspects of interrelations between tetraploid wheat species and Aegilops ventricosa Tausch. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 1981;16(2): 223-228 (in Russian)
88. Olivera P.D., Rouse M.N., Jin Y. Identification of new sources of resistance to wheat stem rust in Aegilops spp. in the tertiary genepool of wheat. Front. Plant Sci. 2018;9:1719. https://doi.org/10.3389/fpls.2018.01719
89. Olivera P.D., Steffenson B.J. Aegilops sharonensis: origin, genetics, diversity, and potential for wheat improvement. Botany. 2009;87(8): 740-756. https://doi.org/10.1139/B09-040
90. Orlovskaya O.A., Leonova I.N., Adonina I.G., Salina E.A., Khotyleva L.V., Shumny V.K. Molecular cytogenetic analysis of triticale and wheat lines with introgressions of the genetic material of Triticeae tribe species. Russ. J. Genet. Appl. Res. 2016;6(5):527-536. https://doi.org/10.1134/S2079059716050087
91. Özkan H., Levy A.A., Feldman M. Allopolyploidy-induced rapid genome evolution in the wheat (Aegilops-Triticum) group. Plant Cell. 2001;13(8):1735-1747. https://doi.org/10.1105/tpc.13.8.1735
92. Pace C.D., Vaccino P., Cionini P.G., Pasquini M., Bizzarri M., Qualset C.O. Dasypyrum. In: Cole C. (Ed.) Wild Crop Relatives: Genomic and Breeding Resources Cereals. Berlin: Springer, 2011; 185-292
93. Peng J.H., Sun D., Nevo E. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 2011;28(3):281. https://doi.org/10.1007/s11032-011-9608-4
94. Piralov G.R. The results of hybridization of wheat with aegilops, rye, Haynaldia and wheatgrass. In: Genetics and Breeding in Azerbaijan. Vol. 1. Baku, 1976;136-137 (in Russian)
95. Prieto P., Martin A., Cabrera A. Chromosomal distribution of telomeric and telomeric-associated sequences in Hordeum chilense by in situ hybridization. Hereditas. 2004;141(2):122-127. https://doi.org/10.1111/j.1601-5223.2004.01825.x
96. Prohens J., Gramazio P., Plazas M., Dempewolf H., Kilian B., Díez M.J., Fita A., Herraiz F.J., Rodríguez-Burruezo A., Soler S., Knapp S., Vilanova S. Introgressiomics: a new approach for using crop wild relatives in breeding for adaptation to climate change. Euphytica. 2017;213(7):158. https://doi.org/10.1007/s10681-017-1938-9
97. Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Rep. 1986;4(2): 102-109. https://doi.org/10.1007/BF02732107
98. Said M., Holušová K., Farkas A., Ivanizs L., Gaál E., Cápal P., Abrouk M., Martis-Thiele M.M., Kalapos B., Bartoš J., Friebe B., Doležel J., Molnár I. Development of DNA markers from physically mapped loci in Aegilops comosa and Aegilops umbellulata using single-gene FISH and chromosome sequences. Front. Plant Sci. 2021;12:1136. https://doi.org/10.3389/fpls.2021.689031
99. Said M., Gaál E., Farkas A., Molnár I., Bartoš J., Doležel J., Cabrera A., Endo T.R. Gametocidal genes: from a discovery to the application in wheat breeding. Front. Plant Sci. 2024;15:1396553. https://doi.org/10.3389/fpls.2024.1396553
100. Schneider A., Molnár I., Molnár-Láng M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163(1):1-19. https://doi.org/10.1007/s10681-007-9624-y
101. Schulz-Schaeffer J., Friebe B. Karyological characterization of a partial amphiploid, Triticum turgidum L. var. durum × Agropyron intermedium (Host) P.B. Euphytica. 1992;62(2):83-88. https://doi.org/10.1007/BF00037932
102. Sharma M., Punya, Gupta B.B. Role of wild relatives for development of climate-resilient varieties. In: Salgotra R.K., Zargar S.M. (Eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Singapore: Springer, 2020;303-314. https://doi.org/10.1007/978-981-15-0156-2_11
103. Sharma S., Schulthess A.W., Bassi F.M., Badaeva E.D., Neumann K., Graner A., Özkan H., Werner P., Knüpffer P., Kilian B. Introducing beneficial alleles from plant genetic resources into the wheat germplasm. Biology. 2021;10(10):982. https://doi.org/10.3390/biology10100982
104. Siddiqui K. Induced mutations in Triticum aegilopoides, Aegilops ventricosa and their synthetic allopolyploid. Hereditas. 2009;73:45-50. https://doi.org/10.1111/j.1601-5223.1973.tb01066.x
105. Siddiqui K., Ingversen J., Køie B. Inheritance of protein patterns in a synthetic allopolyploid of Triticum monococcum (AA) and Aegilops ventricosa (DDMVMV). Hereditas. 2009;72:205-214. https://doi.org/10.1111/j.1601-5223.1972.tb01044.x
106. Tadesse W., Amri A., Ogbonnaya F.C., Sanchez-Garcia M., Sohail Q., Baum M. Wheat. In: Singh M., Upadhyaya H.D. (Eds) Genetic and Genomic Resources for Grain Cereals Improvement. San Diego: Acad. Press, 2016;81-124
107. Tanguy A.-M., Coriton O., Abélard P., Dedryver F., Jahier J. Structure of Aegilops ventricosa chromosome 6Nv, the donor of wheat genes Yr17, Lr37, Sr38, and Cre5. Genome. 2005;48(3):541-546. https://doi.org/10.1139/g05-001
108. Trubacheeva N.V., Efremova T.T., Badaeva E.D., Kravtsova L.A., Belova L.I., Devyatkina E.P., Pershina L.A. Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines. Russ. J. Genet. 2009;45(12):1438-1443. https://doi.org/10.1134/S1022795409120059
109. Tsujimoto H., Tsunewaki K. Gametocidal genes in wheat and its relatives. I. Genetic analyses in common wheat of a gametocidal gene derived from Aegilops speltoides. Can. J. Genet. Cytol. 1984;26(1): 78-84. https://doi.org/10.1139/g84-013
110. Tsujimoto H., Tsunewaki K. Gametocidal genes in wheat and its relatives. III. Chromosome location and effects of two Aegilops speltoides-derived gametocidal genes in common wheat. Genome. 1988; 30(2):239-244. https://doi.org/10.1139/g88-041
111. Tsunewaki K. Plasmon analysis as the counterpart of genome analysis. In: Jauhar P.P. (Ed.) Methods of Genome Analysis in Plant: Their Merrits and Piffals. Boca Ration: CRC Press, 1996;271-299.
112. Wang J., Luo M.-C., Chen Z., You F.M., Wei Y., Zheng Y., Dvorak J. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytologist. 2013;198(3): 925-937. https://doi.org/10.1111/nph.12164
113. Zhang P., Dundas I.S., McIntosh R.A., Xu S.S., Park R.F., Gill B.S., Friebe B. Wheat-Aegilops introgressions. In: Molnár-Láng M., Ceoloni C., Doležel J. (Eds) Alien Introgression in Wheat. Cytogenetics, Molecular Biology, and Genomics. Switzerland: Springer, 2015;221-244. https://doi.org/10.1007/978-3-319-23494-6
114. Zhang W., Zhang R., Feng Y., Bie T., Chen P. Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. Chin. Sci. Bull. 2013;58(8): 890-897. https://doi.org/10.1007/s11434-012-5598-9
115. Zhirov E.G., Ternovskaya T.K. Genome engineering in wheat. Vestnik Sel’skokhozyaystvennykh Nauk = Herald of Agricultural Sciences. 1984;10:58-66 (in Russian)
116. Zhirov E.G., Ternovskaya T.K. Transfer of the chromosome conferring mildew resistance from Aegilops sharonensis Eig into Triticum aestivum L. Genetika = Genetics (Moscow). 1993;29(4):639-645 (in Russian)
117. Zhukovsky P.M. Studies on hybridization and immunity of plants. Trudy Moskovskoi Selskohozyaistvennoi Akademii imeni K.A. Timirjazeva = Proceedings of the Timiryazev Moscow Agricultural Academy. 1944;6:3-48 (in Russian).