The potential of the amaranth collection maintained at VIR in the context of global plant breeding and utilization trends
https://doi.org/10.18699/vjgb-24-81
Abstract
Amaranth is an ancient crop of the family Amaranthaceae, but it is fairly new to Russia. Its seeds and leaf biomass contain a high-quality gluten-free protein, fatty acids, squalene (a polyunsaturated hydrocarbon), flavonoids, vitamins, and minerals. A comprehensive study of amaranth, enhancement of its breeding, and development of new cultivars will contribute to food quality improvement through the use of plant raw materials enriched for wholesome and highly nutritious components. At present, selection and hybridization still remain the main amaranth breeding techniques. Meanwhile, mutation breeding and polyploidy have been successfully employed to increase its seed yield and protein content. The genes encoding amaranth proteins have been used to produce transgenic plants of potato, bread wheat, and maize. Despite the great potential of amaranth, little research has been dedicated to the study of its genomics, concentrating mainly on the identification of its species diversity. Targets of breeding practice for amaranth include such characteristics as large size and nonshattering of seeds, short stem, earliness, high yield, cold hardiness, synchronized maturation, resistance to pests and diseases, and high nutritional value, including the content and quality of protein, lipids, squalene, and bioactive compounds. A unique collection of amaranth maintained at the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR) currently incorporates 570 accessions from various countries. For 70 years it has been replenished with local varieties, commercial cultivars, and wild species supplied by collecting missions, research centers, botanical gardens, genebanks, and experimental breeding stations from all over the world. Long-standing studies have resulted in the formation of trait-specific groups of accessions, with high yields of seeds and leaf biomass, earliness, cold hardiness, high protein content in seeds and biomass, short stems, and resistance to seed shattering, earmarked for vegetable or ornamental purposes. The gene pool of amaranth preserved at VIR can provide unlimited opportunities for breeding and meet the needs of the country’s population, enriching the human diet with ingredients produced from such a health-friendly and useful crop.
Keywords
About the Authors
D. V. SokolovaRussian Federation
St. Petersburg
A. E. Solovieva
Russian Federation
St. Petersburg
A. M. Zaretsky
Russian Federation
St. Petersburg
T. V. Shelenga
Russian Federation
St. Petersburg
References
1. Abbasi D., Rouzbehan Y., Rezaei J. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. Animal. 2012;171: 6-13. DOI 10.1016/j.anifeedsci.2011.09.014
2. Akin-Idowu P., Gbadegesin M., Orkpeh U., Ibitoye D., Odunola O. Characterization of grain amaranth (Amaranthus spp.) germplasm in south west Nigeria using morphological, nutritional, and random amplified polymorphic DNA (RAPD) analysis. Resources. 2016; 5(1):6. DOI 10.3390/resources5010006
3. Arreguez G.A., Martínez J.G., Ponessa G. Amaranthus hybridus L. ssp. hybridus in an archaeological site from the initial mid-holocene in the southern argentinian Puna. Quat. Int. 2013;307:81-85. DOI 10.1016/j.quaint.2013.02.035
4. Ayorinde F.O. Determination of fatty acid composition of Amaranthus species. J. Am. Oil Chem. Soc. 1989;66:1812-1814
5. Baltensperger D.D., Weber L.E., Nelson L.A. Registration of ‘Plainsman’ grain amaranths. Crop Sci. 1992;32:1510-1511. DOI 10.2135/cropsci1992.0011183X003200060047x
6. Behera B., Tripathy A., Patnaik S.N. Histological analysis of colchicines-induced deformities and cytochimeras in Amaranthus caudatus and A. dubius. J. Heridity. 1974;65:179-184
7. Brenner D.M. Hybrid seeds for increased amaranth grain yield. Legacy. 1993;6:9-11
8. Brenner D.M. Registration of DB 199313, cytoplasmic male sterile grain amaranth genetic stock. J. Plant Regist. 2019;13:251-253. DOI 10.3198/jpr2018.06.0042crgs
9. Brenner D.M., Baltensperger D.D., Kulakow P.A., Lehmann J.W., Myers R.L., Slabbert M.M., Sleugh B.B. Genetic resources and breeding in Amaranthus. In: Janick J. (Ed.) Plant Breeding Reviews. Wiley, New York, 2000;19;227-285. DOI 10.1002/9780470650172.ch7
10. Bressani R. Composition and nutritional properties of amaranth. In: Paredes-Lopez O. (Ed.). Amaranth, Biology, Chemistry and Technology. Chap. 10. Boca Raton: CRC Press, 1994. DOI 10.1201/9781351069601-10
11. Chagaray A. Estudio de factibilidad del cultivo del amaranto. Dirección Provincial de programación del desarrollo Ministerio de producción y desarrollo Gobierno de la provincia de Catamarca. Catamarca, Argentina, 2005
12. Chakraborty S., Chakraborty N., Datta A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA. 2000;97:3724-3729. DOI 10.1073/pnas.050012697
13. Chakraborty S., Chakraborty N., Agrawal L., Ghosh S., Narula K., Shekhar S., Naikb P.S., Pandec P.C., Chakrborti S.K., Datta A. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc. Natl. Acad. Sci. USA. 2010;107:17533-17538. DOI 10.1073/pnas.1006265107
14. Cheeke P.R., Carlsson R., Kohler G.O. Nutritive value of leaf protein concentrates prepared from Amaranthus species. Can. J. Anim. Sci. 1981;61:199-204. DOI 10.4141/cjas81-026
15. Cheng A., Mayes S., Dalle G., Demissew S., Massawe F. Diversifying crops for food and nutrition security – a case of teff. Biol. Rev. 2015;92:188-198. DOI 10.1111/brv.12225
16. Costea M., Sanders A., Waines G. Preliminary results towards revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida. 2001;19:931-974
17. Covas G. Perspectivas del cultivo de los amarantos en la republica Argentina. 1993. https://www.semanticscholar.org/paper/Perspectivasdel-cultivo-de-los-amarantos-en-la-Covas/c2d32274738dbf8eb28950d2f077f6809c3b132f
18. Das S. Taxonomical observation on the grain amaranths and new varieties of Amaranthus cruentus (Amaranthaceae). Nord. J. Bot. 2012; 30:412-420. DOI 10.1111/j.1756-1051.2011.01383.x
19. Das S. Amaranthus: A Promising Crop of FUTURE. Springer, Singapore, 2016. DOI 10.1007/978-981-10-1469-7
20. Dawson I.K., Park S.E., Attwood S.J., Jamnadass R., Powell W., Sunderland T., Carsan S. Contributions of biodiversity to the sustainable intensification of food production. Global Food Secur. 2019;21:23- 37. DOI 10.1016/j.gfs.2019.07.002
21. De Montellano B.R.O. Aztec medicine, health, and nutrition. Rutgers University Press, Great Britain, 1990
22. Ebert A. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability. 2014;6:319-335. DOI 10.3390/su6010319
23. Espitia E. Amaranth germplasm development and agronomic studies in Mexico. Food Rev. Int. 1992;8:71-86. DOI 10.1080/87559129209540930
24. Evon P., de Langalerie G., Labonne L., Merah O., Talou T., Ballas S., Véronèse T. Low-density insulation blocks and hardboards from amaranth (Amaranthus cruentus) Stems, a new perspective for building applications. Coatings. 2021;11:349. DOI 10.3390/coatings11030349
25. Gajdošová A., Libiaková G., Fejér J. Improvement of selected Amaranthus cultivars by means of mutation induction and biotechnological approaches. 2007. In: Ochatt S., Mohan Jain S. (Eds.). Breeding of Neglected and Under-utilized Crops, Spices and Herbs. Edenbridge Ltd. USA, 2007;151-169
26. Gamel T.H., Mesallam A.S., Damir A.A., Shekib L.A., Linssen J.P. Characterization of amaranth seed oils. J. Food Lipids. 2007;14: 323-334
27. Gómez-Pando L.R., Eguiluz A., Jiménez J., Falconi J., Aguilar E., Shu Q. Barley (Hordeun vulgare) and kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Shu Q.Y. (Ed.). Induced Plant Mutation in the Genomics Era. Food and Agriculture Organization of the United Nations, Rome, 2009;330-332
28. Gonor K.V., Pogozheva A.V., Derbeneva S.A., Maltsev G.Yu., Trushina E.N., Mustaphina O.K. The influence of a diet with including amaranth oil antioxidant and immune status in patients with ischemic heart disease and hyperlipoproteidemia. Voprosy Pitaniya = Problems of Nutrition. 2006;75(6):30-33. (in Russian)
29. Greizerstein E.J., Poggio L. Estudios citogeneticos de seis hibridos interespecificos de Amaranthus (Amaranthaseae). Darwiniana. 1992; 31:159-165
30. Greizerstein E.J., Poggio L. Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breed. 1995;114:448-450
31. Grobelnik-Mlakar S., Turinek M., Jakop M., Bavec M., Bavec F. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura. 2009;6:43-53
32. Gudu S., Gupta V.K. Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla. Euphytica. 1988;37:23-26. DOI 10.1007/BF00037218
33. Hauptli H., Jain S.K. Biosystematics and agronomic potential of some weedy and cultivated amaranths. Theor. Appl. Genet. 1978;52:177- 185. DOI 10.1007/bf00282575
34. Hauptli H., Jain S. Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica. 1985;66:21-27. DOI 10.1007/bf00123602
35. He H.P., Corke H. Oil and squalene in Amaranthus grain and leaf. J. Agric. Food Chem. 2003;51:7913-7920. DOI 10.1021/jf030489q
36. Huang Z.R., Lin Y.K., Fang J.Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14:540-554. DOI 10.3390/molecules14010540
37. Jamalluddin N., Massawe F.J., Mayes S., Ho W.K., Symonds R.C. Genetic diversity analysis and marker-trait associations in Amaranthus species. PLoS One. 2022;17:0267752. DOI 10.1371/journal.pone.0267752
38. Jofre-Garfias A.E., Villegas-Sepúlveda N., Cabrera-Ponce J.L., AdameAlvarez R.M., Herrera-Estrella L., Simpson J. Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Rep. 1997;16:847-852. DOI 10.1007/s002990050332
39. Joshi B.D., Rana R.S. Grain Amaranths: the Future Food Crops. New Delhi: National Bureau of Plant Genetic Resources, 1991 Joshi B.D., Mehra K.L., Sharma S.D. Cultivation of grain amaranth in the north-western hills. Indian Farming. 1983;32:34-37
40. Joshi D.C., Sood S., Hosahatti R., Kant L., Pattanayak A., Kumar A., Yadav D., Stetter M.G. From zero to hero: the past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018;131: 1807-1823. DOI 10.1007/s00122-018-3138-y
41. Kauffman C.S. Thoughts on the development of improved varieties of grain amaranth. In: Proceedings Third Amaranth Conference, Grain Amaranth: Expanding Consumption through Improved Cropping, Marketing and Crop Development. Rodale Press, USA, 1984
42. Kauffman C.S. Realizing the potential of grain amaranth. Food Rev. Int. 1992;8:5-21. DOI 10.1080/87559129209540927
43. Kauffman C.S., Weber L.E. Grain amaranth. In: Advances in New Crops. Portland: Timber Press, 1990;127-139
44. Khoshoo T.N., Pal M. Cytogenetic pattern in Amaranthus. Chromosomes Today. 1972;3:259-267
45. Khoury C.K., Bjorkman A.D., Dempewolf H., Ramirez-Villegas J., Guarino L., Jarvis A., Rieseberg L.H., Struik P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA. 2014;111:4001-4006. DOI 10.1073/pnas.1313490111
46. Kononkov P.F., Gins V.K., Gins M.S. Amaranth is a Promising Crop of the 21st Century. Moscow, RUDN University Publ., 1999 (in Russian)
47. Kononkov P.F., Sergeeva V.A. Amaranth – the valuable vegetable and forage crops multifaceted use. Agrarnyy Vestnik Urala = Agrarian Bulletin of the Urals. 2011;4:63-64 (in Russian)
48. Kpochemè A.O.E.K., Hotegni N.F., Missihoun A.A., Gnanvi B.N., Atou R., Wouyou A., Montcho D., Gandonou C.B., Agbangla C., Ahoton L. Morphological characterization of Amaranthus cruentus L. mutant lines derived from local and preferred Amaranthus cultivar. Int. J. Biol. Chem. Sci. 2022;16:1554-1569. DOI 10.4314/ijbcs.v16i4.16
49. Lehmann J.W., Clark R.L., Frey K.J. Biomass heterosis and combining ability in interspecific and intraspecific matings of grain amaranths. Crop Sci. 1991;31:1111-1116. DOI 10.2135/cropsci1991.0011183x003100050004x
50. Leon-Camacho M., Garcia-Gonzalez D.L., Aparicio R. A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur. Food Res. Technol. 2001;213:349-355. DOI 10.1007/s002170100340
51. Lightfoot D.J., Jarvis D.E., Ramaraj T., Lee R., Jellen E.N., Maughan P.J. Single-molecule sequencing and Hi-C-based proximityguided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biology. 2017;15:74. DOI 10.1186/s12915-017-0412-4
52. Lymanska S.V., Miroshnichenko L.A., Goptsiy T.I., Korneeva O.S. Polymorphism of RAPD and ISSR markers in grain amaranth spe- cies. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(2):189-197. DOI 10.18699/VJ17.236
53. Ma X., Vaistij F.E., Li Y., Van Rensburg W.S.J., Harvey S., Bairu M.W., Venter S.L., Mavengahama S., Ning Z., Graham I.A., Deynze A.V., Peer Y.V., Denby K.J. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. Plant J. 2021;107:613-628. DOI 10.1111/tpj.15298
54. Madhusoodanan K.J., Pal M. Autotetraploids in Amaranthus tricolor Linn. Indian J. Genet. 1984;44:181-185
55. Magomedov I.M., Chirkova T.V. Amaranth – past, present and future. Uspekhi Sovremennogo Yestestvoznaniya = Advances in Сurrent Natural Sciences. 2015;1:1108-1113 (in Russian)
56. Magomedov I.M., Chirkova А.I., Chirkova T.V. The role of biopeptides and antioxidants from amaranth grain in the prevention of chronic human diseases. Prakticheskaya Fitoterapiya = Practical Phytotherapy. 2017;2:49-54 (in Russian)
57. Mangelsdorf P.C. Genetic potentials for increasing yields of food crops and animals. Proc. Natl. Acad. Sci. USA. 1966;56:370-375. DOI 10.1073/pnas.56.2.370
58. Maughan P., Smith S., Fairbanks D., Jellen E. Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Gen. 2011;4:92. DOI 10.3835/plantgenome2010.12.0027
59. Mayes S., Massawe F.J., Alderson P.G., Roberts J.A., Azam-Ali S.N., Hermann M. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 2011;63:1075-1079. DOI 10.1093/jxb/err396
60. Miettinen T.A., Vanhanen H. Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. Am. J. Clin. Nutr. 1994;59(2):356-363. DOI 10.1093/ajcn/59.2.356
61. Mohindeen H.K., Irulappan I. Improvement in amaranths. In: Chadha K.L., Kalloo G. (Eds.) Advances in Horticulture: Vegetable Crops. New Delhi: Malhotra Publishing House, 1993
62. Munusamy U., Abdullah S.N.A., Aziz M.A., Khazaai H. Female reproductive system of Amaranthus as the target for Agrobacteriummediated transformation. Adv. Biosci. Biotechnol. 2013;4:188-192. DOI 10.4236/abb.2013.42027
63. Murray M.J. The genetics of sex determination in the family Amaranthaceae. Genetics. 1940;25:409-431. DOI 10.1093/genetics/25.4.409
64. Murugan S.B., Sathishkumar R. Establishment of high frequency callus induction and genetic transformation in neglected leafy vegetable Amaranthus trisis. Austin J. Biotechnol. Bioeng. 2016;3:1058
65. Myers R.L., Putnam D.H. Growing grain amaranth as a specialty crop. Center for alternative crops and products, university of Minnesota. 1988. https://conservancy.umn.edu/items/d6b7c0a1-6c3e-45a8-bf8d08ab79a5cdb6 (date of access: 28.06.2024)
66. Nguyen D.C., Tran D.S., Tran T.T.H., Ohsawa R., Yoshioka Y. Genetic diversity of leafy amaranth (Amaranthus tricolor L.) resources in Vietnam. Breed. Sci. 2019;69:640-650. DOI 10.1270/jsbbs.19050
67. Oduwaye O.A., Ayo-Vaughan M.A., Porbeni J.B.O., Oyelakin O.O. Genetic diversity in Amaranth (Amaranthus spp.) based on phenotypic and RAPD markers. Nigerian J. Biotechnol. 2019;36:62-68. DOI 10.4314/njb.v36i1.9
68. Pal A., Swain S.S., Das A.B., Mukherjee A.K., Chand P.K. Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol.-Plant. 2013;49:114-128. DOI 10.1007/s11627-013-9489-9
69. Palombini S.V., Claus T., Maruyama S.A., Gohara A.K., Souza A.H.P., Souza N.E., Visentainer J.V., Gomes S.T.M., Matsushita M. Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci. Technol. 2013;33:339-344. DOI 10.1590/s0101-20612013005000051
70. Pandey R.M., Pal M. Genetics of grain protein in Amaranthus. Crop Improv. 1985;12:55-58
71. Patent, 2022. https://gossortrf.ru/registry/gosudarstvennyy-reestr-selek tsionnykh-dostizheniy-dopushchennykh-k-ispolzovaniyu-tom1-sorta-rasteni/frant-amarant-metelchatyy/ (date of access: 04.11.2024) (in Russian)
72. Peters I., Jain S. Genetics of grain amaranths. Gene-cytoplasmic malesterility. J. Heredity. 1987;78:251-256. DOI 10.1093/oxfordjournals.jhered.a110377
73. Raiger H.L., Bhandari D.C. Underutilized crops: varieties released in India. All India Coordinated Research Network on Underutilized Crops. New Daihi: NBPGR, 2012
74. Raina A., Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA. 1992;89:11774-11778. DOI 10.1073/pnas.89.24.11774
75. Ramdwar M.N., Chadee S.T., Stoute V.A. Estimating the potential consumption level of amaranth for food security initiatives in Trinidad, West Indies. Cogent Food Agric. 2017;3:1321475. DOI 10.1080/23311932.2017.1321475
76. Rao C.V., Newmark H.L., Reddy B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis. 1998;19:287-290. DOI 10.1093/carcin/19.2.287
77. Rascón-Cruz Q., Sinagawa-García S., Osuna-Castro J.A., Bohorova N., Paredes-López O. Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor. Appl. Genet. 2004;108:335-342. DOI 10.1007/s00122-003-1430-x
78. Rezaei J., Rouzbehan Y., Fazaeli H. An assessment of digestibility and protein quality of the fresh and ensiled amaranth forage according to CNCPS. Iranian J. Anim. Sci. 2009;40:31-38
79. Ruth O.N., Unathi K., Nomali N., Chinsamy M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: a mini-review. Appl. Sci. 2021;11:6879. DOI 10.3390/app11156879
80. Sauer J.D. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann. Mo. Bot. Gard. 1967;54:103-137. DOI 10.2307/2394998
81. Saunders R.M., Becker R. Amaranthus: a potential food and feed resource. In: Pomeranz Y. (Ed.). Advances in Cereal Science and Technology. St. Paul: American Association of Cereal Chemists, 1984; 357-396
82. Schulz-Schaeffer J., Stallknecht G.F., Baldridge D.E., Larson R.A. Registration of Montana-3 grain amaranth germplasm. Crop Sci. 1989a;29:244-245
83. Schulz-Schaeffer J., Webb D.M., Baldridge D.E., Stallknecht G.F., Larson R.A. Registration of Montana-5 grain amaranth germplasm. Crop Sci. 1989b;29:1581
84. Schulz-Schaeffer J., Baldridge D.E., Bowman H.F., Stallknecht G.F., Larson R.A. Registration of ‘Amont’ grain amaranth. Crop Sci. 1991;31:482-483
85. Shadi H., Rouzbehan Y., Rezaei J., Fazaeli H. Yield, chemical composition, fermentation characteristics, in vitro ruminal variables, and degradability of ensiled amaranth (Amaranthus hypochondriacus) cultivars compared with corn (Zea mays) silage. Transl. Anim. Sci. 2020;4:1-12. DOI 10.1093/tas/txaa180
86. Shcherban A.B., Stasyuk A.I. Polymorphism of the squalene synthase gene (SQS) in different species of amaranth (Amaranthus L.). Russ. J. Genet. 2020;56:298-306. DOI 10.31857/S0016675820030145
87. Singh A., Mahato A.K., Maurya A., Rajkumar S., Singh A.K., Bhardwaj R., Kaushik S.K., Kumar S., Gupta V., Singh K., Singh R. Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. Front. Plant Sci. 2023;14: 1203855. DOI 10.3389/fpls.2023.1203855
88. Sleugh B.B., Moore K.J., Brummer E.C., Knapp A.D., Russell J., Gibson L. Forage value of various amaranth species at different harvest dates. Crop Sci. 2021;41:466-472. DOI 10.2135/cropsci2001.412466x
89. Smith M.E. The Aztecs. Blackwell, Oxford, 1996
90. Smith T.J. Squalene: potential chemopreventive agent. Expert Opin. Invest. Drugs. 2000;9:1841-1848. DOI 10.1517/13543784.9.8.1841
91. Sokolova D., Zvereva O., Shelenga T., Solovieva A. Comparative characteristics of the amino acid composition in amaranth accessions from the VIR collection. Turk. J. Agric. For. 2021;45:68-78. DOI 10.3906/tar-2007-7
92. Soriano-Garcıa M., Arias-Olguín I.I., Montes J.P.C., Ramırez D.G.R., Silvestre Mendoza Figueroa J., Flores-Valverde E., Rodrguez M.R.V. Nutritional functional value and therapeutic utilization of amaranth. J. Analytical Pharm. Res. 2018;7(5):596-600. DOI 10.15406/japlr.2018.07.00288
93. Sreelathakumary I., Peter K.V. Amaranth-Amaranthus spp. In: Kallo G., Bergh B.O. (Eds.). Genetic Improvement of Vegetable Crops. Oxford: Pergamon Press, 1993; 315-323
94. Stallknecht G.F., Schulz-Schaefer J.R. Amaranth rediscovered. In: Janick J., Simon J.E. (Eds.). New Crops. New York: Wiley, 1993
95. State Register of Selection Achievements Admitted for Usage, 2023. https://gossortrf.ru/publication/reestry.php (date of access: 24.04.2024). (in Russian)
96. Stetter M.G., Zeitler L., Steinhaus A., Kroener K., Biljecki M., Schmid K.J. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front. Plant Sci. 2016;7:816. DOI 10.3389/fpls.2016.00816
97. Sun Y., Yue S. Research on polyploid grain amaranth – a preliminary study on selection of grain amaranth with character of bigger seed (in Chinese). In: Yue S. (Ed.). The Research and Development of Grain Amaranth in China. Beijing, China, 1993
98. Sun G.Q., Ma J., Du W., Wang Y., Li S.L., Xiong Y., Yu X., Lei X., Yabin M.L. Effects of dietary supplementation of Amaranthus hypochondriacus L. on Ruminal fermentation, blood indicators and performance of dairy cows. Chin. J. Animal Nutr. 2017;29:1652-1660
99. Suresh S., Chung J.-W., Cho G.-T., Sung J.-S., Park J.-H., Gwag J.-G., Baek H.-J. Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers. Plant Biosyst. - Int. J. Dealing Aspects Plant Biosyst. 2014;148:635-644. DOI 10.1080/11263504.2013.788095
100. Taipova R.M., Musin K.G., Kuluev B.R. Agrobacterium-mediated transformation of Amaranthus cruentus L. epicotils. Zhurnal Sibirskogo Federal’nogo Universiteta. Seriya: Biologiya = Journal of Siberian Federal University Biology. 2020;13:179-187. DOI 10.17516/1997-1389-0292 (in Russian)
101. Taipova R.M., Nesterov V.N., Rozentsvet O.A., Kuluev B.R. Changes in the content of proteins and lipids and in the state of the antioxidant system in mutant forms of Amaranthus cruentus L. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2022;183:76-85. DOI 10.30901/2227-8834-2022-1-76-85 (in Russian)
102. Tamás C., Kisgyörgy B.N., Rakszegi M., Wilkinson M.D., Yang M.-S., Láng L., Tamas L., Bedő Z. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep. 2009;28: 1085-1094. DOI 10.1007/s00299-009-0716-0
103. Tang Y., Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017;61:1600767. DOI 10.1002/mnfr.201600767
104. Teutonico R.A., Knorr D. Amaranth: composition, properties and applications of a rediscovered food crop. Food Technol. 1985;1: 49-60
105. Transue D.K., Fairbanks D.J., Robison L.R., Andersen W.R. Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci. 1994;34:1385. DOI 10.2135/cropsci1994.0011183x003400050044x
106. Venskutonis P.R., Kraujalis P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013;12:381-412. DOI 10.1111/1541-4337.12021.