Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Потенциал коллекции амаранта ВИР в свете мировых тенденций использования и селекции

https://doi.org/10.18699/vjgb-24-81

Аннотация

Амарант - древняя культура семейства Амарантовые (Amaranthaceae). Для России это достаточно новая сельскохозяйственная культура. В семенах и листовой биомассе содержатся высококачественный безглютеновый белок, жирные кислоты, полиненасыщенный углеводород сквален, флавоноиды, витамины и минералы. Комплексное изучение амаранта, развитие его селекции и создание новых сортов являются крайне важным направлением для решения проблемы повышения качества пищевой продукции путем использования растительного сырья, обогащенного полезными и высокопитательными компонентами. На сегодняшний день основными методами селекционной работы с амарантом остаются отбор и гибридизация. Методы мутационной селекции и полиплоидии были успешно использованы для увеличения урожайности семян и содержания белка. С помощью генов, кодирующих белки амаранта, созданы трансгенные растения картофеля, мягкой пшеницы и кукурузы. Несмотря на большой потенциал амаранта, изучению его геномики посвящено не много исследова- ний, направленных главным образом на идентификацию видового разнообразия. В направления селекционной работы с амарантом входят такие признаки, как «крупность и неосыпаемость семян», «низкорослость», «скороспелость», «высокая урожайность», «холодостойкость», «синхронность созревания», «устойчивость к вредителям и болезням», «высокая питательная ценность»: содержание и качество белка, липидов, сквалена, биологически активных соединений. Уникальная коллекция амаранта Всероссийского института генетических ресурсов растений им. Н.И. Вавилова (ВИР) включает 570 образцов из различных стран мира. На протяжении 70 лет она пополнялась местными, селекционными сортами и дикими видами за счет экспедиций, поступлений из научноисследовательских институтов, ботанических садов, генбанков и опытных селекционных станций всего мира. В результате многолетнего изучения были сформированы признаковые группы образцов с высокой урожайностью семян и листовой биомассы, скороспелые и холодостойкие, с повышенным содержанием белка в семенах и биомассе, низкорослые, устойчивые к осыпанию семян, овощного и декоративного направления использования. Сохраняемый в ВИР генофонд амаранта способен предоставлять неограниченные возможности для селекции и восполнять нужды населения страны, обогащая питательный рацион продуктами из этой здоровой и полезной культуры.

Об авторах

Д. В. Соколова
Федеральный исследовательский центр, Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия

Санкт-Петербург



А. E. Соловьева
Федеральный исследовательский центр, Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия

Санкт-Петербург



А. М. Зарецкий
Федеральный исследовательский центр, Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия

Санкт-Петербург



Т. В. Шеленга
Федеральный исследовательский центр, Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР)
Россия

Санкт-Петербург



Список литературы

1. Abbasi D., Rouzbehan Y., Rezaei J. Effect of harvest date and nitrogen fertilization rate on the nutritive value of amaranth forage (Amaranthus hypochondriacus). Anim. Feed Sci. Technol. Animal. 2012;171: 6-13. DOI 10.1016/j.anifeedsci.2011.09.014

2. Akin-Idowu P., Gbadegesin M., Orkpeh U., Ibitoye D., Odunola O. Characterization of grain amaranth (Amaranthus spp.) germplasm in south west Nigeria using morphological, nutritional, and random amplified polymorphic DNA (RAPD) analysis. Resources. 2016; 5(1):6. DOI 10.3390/resources5010006

3. Arreguez G.A., Martínez J.G., Ponessa G. Amaranthus hybridus L. ssp. hybridus in an archaeological site from the initial mid-holocene in the southern argentinian Puna. Quat. Int. 2013;307:81-85. DOI 10.1016/j.quaint.2013.02.035

4. Ayorinde F.O. Determination of fatty acid composition of Amaranthus species. J. Am. Oil Chem. Soc. 1989;66:1812-1814

5. Baltensperger D.D., Weber L.E., Nelson L.A. Registration of ‘Plainsman’ grain amaranths. Crop Sci. 1992;32:1510-1511. DOI 10.2135/cropsci1992.0011183X003200060047x

6. Behera B., Tripathy A., Patnaik S.N. Histological analysis of colchicines-induced deformities and cytochimeras in Amaranthus caudatus and A. dubius. J. Heridity. 1974;65:179-184

7. Brenner D.M. Hybrid seeds for increased amaranth grain yield. Legacy. 1993;6:9-11

8. Brenner D.M. Registration of DB 199313, cytoplasmic male sterile grain amaranth genetic stock. J. Plant Regist. 2019;13:251-253. DOI 10.3198/jpr2018.06.0042crgs

9. Brenner D.M., Baltensperger D.D., Kulakow P.A., Lehmann J.W., Myers R.L., Slabbert M.M., Sleugh B.B. Genetic resources and breeding in Amaranthus. In: Janick J. (Ed.) Plant Breeding Reviews. Wiley, New York, 2000;19;227-285. DOI 10.1002/9780470650172.ch7

10. Bressani R. Composition and nutritional properties of amaranth. In: Paredes-Lopez O. (Ed.). Amaranth, Biology, Chemistry and Technology. Chap. 10. Boca Raton: CRC Press, 1994. DOI 10.1201/9781351069601-10

11. Chagaray A. Estudio de factibilidad del cultivo del amaranto. Dirección Provincial de programación del desarrollo Ministerio de producción y desarrollo Gobierno de la provincia de Catamarca. Catamarca, Argentina, 2005

12. Chakraborty S., Chakraborty N., Datta A. Increased nutritive value of transgenic potato by expressing a nonallergenic seed albumin gene from Amaranthus hypochondriacus. Proc. Natl. Acad. Sci. USA. 2000;97:3724-3729. DOI 10.1073/pnas.050012697

13. Chakraborty S., Chakraborty N., Agrawal L., Ghosh S., Narula K., Shekhar S., Naikb P.S., Pandec P.C., Chakrborti S.K., Datta A. Next-generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc. Natl. Acad. Sci. USA. 2010;107:17533-17538. DOI 10.1073/pnas.1006265107

14. Cheeke P.R., Carlsson R., Kohler G.O. Nutritive value of leaf protein concentrates prepared from Amaranthus species. Can. J. Anim. Sci. 1981;61:199-204. DOI 10.4141/cjas81-026

15. Cheng A., Mayes S., Dalle G., Demissew S., Massawe F. Diversifying crops for food and nutrition security – a case of teff. Biol. Rev. 2015;92:188-198. DOI 10.1111/brv.12225

16. Costea M., Sanders A., Waines G. Preliminary results towards revision of the Amaranthus hybridus species complex (Amaranthaceae). Sida. 2001;19:931-974

17. Covas G. Perspectivas del cultivo de los amarantos en la republica Argentina. 1993. https://www.semanticscholar.org/paper/Perspectivasdel-cultivo-de-los-amarantos-en-la-Covas/c2d32274738dbf8eb28950d2f077f6809c3b132f

18. Das S. Taxonomical observation on the grain amaranths and new varieties of Amaranthus cruentus (Amaranthaceae). Nord. J. Bot. 2012; 30:412-420. DOI 10.1111/j.1756-1051.2011.01383.x

19. Das S. Amaranthus: A Promising Crop of FUTURE. Springer, Singapore, 2016. DOI 10.1007/978-981-10-1469-7

20. Dawson I.K., Park S.E., Attwood S.J., Jamnadass R., Powell W., Sunderland T., Carsan S. Contributions of biodiversity to the sustainable intensification of food production. Global Food Secur. 2019;21:23- 37. DOI 10.1016/j.gfs.2019.07.002

21. De Montellano B.R.O. Aztec medicine, health, and nutrition. Rutgers University Press, Great Britain, 1990

22. Ebert A. Potential of underutilized traditional vegetables and legume crops to contribute to food and nutritional security, income and more sustainable production systems. Sustainability. 2014;6:319-335. DOI 10.3390/su6010319

23. Espitia E. Amaranth germplasm development and agronomic studies in Mexico. Food Rev. Int. 1992;8:71-86. DOI 10.1080/87559129209540930

24. Evon P., de Langalerie G., Labonne L., Merah O., Talou T., Ballas S., Véronèse T. Low-density insulation blocks and hardboards from amaranth (Amaranthus cruentus) Stems, a new perspective for building applications. Coatings. 2021;11:349. DOI 10.3390/coatings11030349

25. Gajdošová A., Libiaková G., Fejér J. Improvement of selected Amaranthus cultivars by means of mutation induction and biotechnological approaches. 2007. In: Ochatt S., Mohan Jain S. (Eds.). Breeding of Neglected and Under-utilized Crops, Spices and Herbs. Edenbridge Ltd. USA, 2007;151-169

26. Gamel T.H., Mesallam A.S., Damir A.A., Shekib L.A., Linssen J.P. Characterization of amaranth seed oils. J. Food Lipids. 2007;14: 323-334

27. Gómez-Pando L.R., Eguiluz A., Jiménez J., Falconi J., Aguilar E., Shu Q. Barley (Hordeun vulgare) and kiwicha (Amaranthus caudatus) improvement by mutation induction in Peru. In: Shu Q.Y. (Ed.). Induced Plant Mutation in the Genomics Era. Food and Agriculture Organization of the United Nations, Rome, 2009;330-332

28. Gonor K.V., Pogozheva A.V., Derbeneva S.A., Maltsev G.Yu., Trushina E.N., Mustaphina O.K. The influence of a diet with including amaranth oil antioxidant and immune status in patients with ischemic heart disease and hyperlipoproteidemia. Voprosy Pitaniya = Problems of Nutrition. 2006;75(6):30-33. (in Russian)

29. Greizerstein E.J., Poggio L. Estudios citogeneticos de seis hibridos interespecificos de Amaranthus (Amaranthaseae). Darwiniana. 1992; 31:159-165

30. Greizerstein E.J., Poggio L. Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breed. 1995;114:448-450

31. Grobelnik-Mlakar S., Turinek M., Jakop M., Bavec M., Bavec F. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura. 2009;6:43-53

32. Gudu S., Gupta V.K. Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla. Euphytica. 1988;37:23-26. DOI 10.1007/BF00037218

33. Hauptli H., Jain S.K. Biosystematics and agronomic potential of some weedy and cultivated amaranths. Theor. Appl. Genet. 1978;52:177- 185. DOI 10.1007/bf00282575

34. Hauptli H., Jain S. Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica. 1985;66:21-27. DOI 10.1007/bf00123602

35. He H.P., Corke H. Oil and squalene in Amaranthus grain and leaf. J. Agric. Food Chem. 2003;51:7913-7920. DOI 10.1021/jf030489q

36. Huang Z.R., Lin Y.K., Fang J.Y. Biological and pharmacological activities of squalene and related compounds: potential uses in cosmetic dermatology. Molecules. 2009;14:540-554. DOI 10.3390/molecules14010540

37. Jamalluddin N., Massawe F.J., Mayes S., Ho W.K., Symonds R.C. Genetic diversity analysis and marker-trait associations in Amaranthus species. PLoS One. 2022;17:0267752. DOI 10.1371/journal.pone.0267752

38. Jofre-Garfias A.E., Villegas-Sepúlveda N., Cabrera-Ponce J.L., AdameAlvarez R.M., Herrera-Estrella L., Simpson J. Agrobacterium-mediated transformation of Amaranthus hypochondriacus: light- and tissue-specific expression of a pea chlorophyll a/b-binding protein promoter. Plant Cell Rep. 1997;16:847-852. DOI 10.1007/s002990050332

39. Joshi B.D., Rana R.S. Grain Amaranths: the Future Food Crops. New Delhi: National Bureau of Plant Genetic Resources, 1991 Joshi B.D., Mehra K.L., Sharma S.D. Cultivation of grain amaranth in the north-western hills. Indian Farming. 1983;32:34-37

40. Joshi D.C., Sood S., Hosahatti R., Kant L., Pattanayak A., Kumar A., Yadav D., Stetter M.G. From zero to hero: the past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018;131: 1807-1823. DOI 10.1007/s00122-018-3138-y

41. Kauffman C.S. Thoughts on the development of improved varieties of grain amaranth. In: Proceedings Third Amaranth Conference, Grain Amaranth: Expanding Consumption through Improved Cropping, Marketing and Crop Development. Rodale Press, USA, 1984

42. Kauffman C.S. Realizing the potential of grain amaranth. Food Rev. Int. 1992;8:5-21. DOI 10.1080/87559129209540927

43. Kauffman C.S., Weber L.E. Grain amaranth. In: Advances in New Crops. Portland: Timber Press, 1990;127-139

44. Khoshoo T.N., Pal M. Cytogenetic pattern in Amaranthus. Chromosomes Today. 1972;3:259-267

45. Khoury C.K., Bjorkman A.D., Dempewolf H., Ramirez-Villegas J., Guarino L., Jarvis A., Rieseberg L.H., Struik P.C. Increasing homogeneity in global food supplies and the implications for food security. Proc. Natl. Acad. Sci. USA. 2014;111:4001-4006. DOI 10.1073/pnas.1313490111

46. Kononkov P.F., Gins V.K., Gins M.S. Amaranth is a Promising Crop of the 21st Century. Moscow, RUDN University Publ., 1999 (in Russian)

47. Kononkov P.F., Sergeeva V.A. Amaranth – the valuable vegetable and forage crops multifaceted use. Agrarnyy Vestnik Urala = Agrarian Bulletin of the Urals. 2011;4:63-64 (in Russian)

48. Kpochemè A.O.E.K., Hotegni N.F., Missihoun A.A., Gnanvi B.N., Atou R., Wouyou A., Montcho D., Gandonou C.B., Agbangla C., Ahoton L. Morphological characterization of Amaranthus cruentus L. mutant lines derived from local and preferred Amaranthus cultivar. Int. J. Biol. Chem. Sci. 2022;16:1554-1569. DOI 10.4314/ijbcs.v16i4.16

49. Lehmann J.W., Clark R.L., Frey K.J. Biomass heterosis and combining ability in interspecific and intraspecific matings of grain amaranths. Crop Sci. 1991;31:1111-1116. DOI 10.2135/cropsci1991.0011183x003100050004x

50. Leon-Camacho M., Garcia-Gonzalez D.L., Aparicio R. A detailed and comprehensive study of amaranth (Amaranthus cruentus L.) oil fatty profile. Eur. Food Res. Technol. 2001;213:349-355. DOI 10.1007/s002170100340

51. Lightfoot D.J., Jarvis D.E., Ramaraj T., Lee R., Jellen E.N., Maughan P.J. Single-molecule sequencing and Hi-C-based proximityguided assembly of amaranth (Amaranthus hypochondriacus) chromosomes provide insights into genome evolution. BMC Biology. 2017;15:74. DOI 10.1186/s12915-017-0412-4

52. Lymanska S.V., Miroshnichenko L.A., Goptsiy T.I., Korneeva O.S. Polymorphism of RAPD and ISSR markers in grain amaranth spe- cies. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(2):189-197. DOI 10.18699/VJ17.236

53. Ma X., Vaistij F.E., Li Y., Van Rensburg W.S.J., Harvey S., Bairu M.W., Venter S.L., Mavengahama S., Ning Z., Graham I.A., Deynze A.V., Peer Y.V., Denby K.J. A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop. Plant J. 2021;107:613-628. DOI 10.1111/tpj.15298

54. Madhusoodanan K.J., Pal M. Autotetraploids in Amaranthus tricolor Linn. Indian J. Genet. 1984;44:181-185

55. Magomedov I.M., Chirkova T.V. Amaranth – past, present and future. Uspekhi Sovremennogo Yestestvoznaniya = Advances in Сurrent Natural Sciences. 2015;1:1108-1113 (in Russian)

56. Magomedov I.M., Chirkova А.I., Chirkova T.V. The role of biopeptides and antioxidants from amaranth grain in the prevention of chronic human diseases. Prakticheskaya Fitoterapiya = Practical Phytotherapy. 2017;2:49-54 (in Russian)

57. Mangelsdorf P.C. Genetic potentials for increasing yields of food crops and animals. Proc. Natl. Acad. Sci. USA. 1966;56:370-375. DOI 10.1073/pnas.56.2.370

58. Maughan P., Smith S., Fairbanks D., Jellen E. Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Gen. 2011;4:92. DOI 10.3835/plantgenome2010.12.0027

59. Mayes S., Massawe F.J., Alderson P.G., Roberts J.A., Azam-Ali S.N., Hermann M. The potential for underutilized crops to improve security of food production. J. Exp. Bot. 2011;63:1075-1079. DOI 10.1093/jxb/err396

60. Miettinen T.A., Vanhanen H. Serum concentration and metabolism of cholesterol during rapeseed oil and squalene feeding. Am. J. Clin. Nutr. 1994;59(2):356-363. DOI 10.1093/ajcn/59.2.356

61. Mohindeen H.K., Irulappan I. Improvement in amaranths. In: Chadha K.L., Kalloo G. (Eds.) Advances in Horticulture: Vegetable Crops. New Delhi: Malhotra Publishing House, 1993

62. Munusamy U., Abdullah S.N.A., Aziz M.A., Khazaai H. Female reproductive system of Amaranthus as the target for Agrobacteriummediated transformation. Adv. Biosci. Biotechnol. 2013;4:188-192. DOI 10.4236/abb.2013.42027

63. Murray M.J. The genetics of sex determination in the family Amaranthaceae. Genetics. 1940;25:409-431. DOI 10.1093/genetics/25.4.409

64. Murugan S.B., Sathishkumar R. Establishment of high frequency callus induction and genetic transformation in neglected leafy vegetable Amaranthus trisis. Austin J. Biotechnol. Bioeng. 2016;3:1058

65. Myers R.L., Putnam D.H. Growing grain amaranth as a specialty crop. Center for alternative crops and products, university of Minnesota. 1988. https://conservancy.umn.edu/items/d6b7c0a1-6c3e-45a8-bf8d08ab79a5cdb6 (date of access: 28.06.2024)

66. Nguyen D.C., Tran D.S., Tran T.T.H., Ohsawa R., Yoshioka Y. Genetic diversity of leafy amaranth (Amaranthus tricolor L.) resources in Vietnam. Breed. Sci. 2019;69:640-650. DOI 10.1270/jsbbs.19050

67. Oduwaye O.A., Ayo-Vaughan M.A., Porbeni J.B.O., Oyelakin O.O. Genetic diversity in Amaranth (Amaranthus spp.) based on phenotypic and RAPD markers. Nigerian J. Biotechnol. 2019;36:62-68. DOI 10.4314/njb.v36i1.9

68. Pal A., Swain S.S., Das A.B., Mukherjee A.K., Chand P.K. Stable germ line transformation of a leafy vegetable crop amaranth (Amaranthus tricolor L.) mediated by Agrobacterium tumefaciens. In Vitro Cell. Dev. Biol.-Plant. 2013;49:114-128. DOI 10.1007/s11627-013-9489-9

69. Palombini S.V., Claus T., Maruyama S.A., Gohara A.K., Souza A.H.P., Souza N.E., Visentainer J.V., Gomes S.T.M., Matsushita M. Evaluation of nutritional compounds in new amaranth and quinoa cultivars. Food Sci. Technol. 2013;33:339-344. DOI 10.1590/s0101-20612013005000051

70. Pandey R.M., Pal M. Genetics of grain protein in Amaranthus. Crop Improv. 1985;12:55-58

71. Patent, 2022. https://gossortrf.ru/registry/gosudarstvennyy-reestr-selek tsionnykh-dostizheniy-dopushchennykh-k-ispolzovaniyu-tom1-sorta-rasteni/frant-amarant-metelchatyy/ (date of access: 04.11.2024) (in Russian)

72. Peters I., Jain S. Genetics of grain amaranths. Gene-cytoplasmic malesterility. J. Heredity. 1987;78:251-256. DOI 10.1093/oxfordjournals.jhered.a110377

73. Raiger H.L., Bhandari D.C. Underutilized crops: varieties released in India. All India Coordinated Research Network on Underutilized Crops. New Daihi: NBPGR, 2012

74. Raina A., Datta A. Molecular cloning of a gene encoding a seed-specific protein with nutritionally balanced amino acid composition from Amaranthus. Proc. Natl. Acad. Sci. USA. 1992;89:11774-11778. DOI 10.1073/pnas.89.24.11774

75. Ramdwar M.N., Chadee S.T., Stoute V.A. Estimating the potential consumption level of amaranth for food security initiatives in Trinidad, West Indies. Cogent Food Agric. 2017;3:1321475. DOI 10.1080/23311932.2017.1321475

76. Rao C.V., Newmark H.L., Reddy B.S. Chemopreventive effect of squalene on colon cancer. Carcinogenesis. 1998;19:287-290. DOI 10.1093/carcin/19.2.287

77. Rascón-Cruz Q., Sinagawa-García S., Osuna-Castro J.A., Bohorova N., Paredes-López O. Accumulation, assembly, and digestibility of amarantin expressed in transgenic tropical maize. Theor. Appl. Genet. 2004;108:335-342. DOI 10.1007/s00122-003-1430-x

78. Rezaei J., Rouzbehan Y., Fazaeli H. An assessment of digestibility and protein quality of the fresh and ensiled amaranth forage according to CNCPS. Iranian J. Anim. Sci. 2009;40:31-38

79. Ruth O.N., Unathi K., Nomali N., Chinsamy M. Underutilization versus nutritional-nutraceutical potential of the Amaranthus food plant: a mini-review. Appl. Sci. 2021;11:6879. DOI 10.3390/app11156879

80. Sauer J.D. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Ann. Mo. Bot. Gard. 1967;54:103-137. DOI 10.2307/2394998

81. Saunders R.M., Becker R. Amaranthus: a potential food and feed resource. In: Pomeranz Y. (Ed.). Advances in Cereal Science and Technology. St. Paul: American Association of Cereal Chemists, 1984; 357-396

82. Schulz-Schaeffer J., Stallknecht G.F., Baldridge D.E., Larson R.A. Registration of Montana-3 grain amaranth germplasm. Crop Sci. 1989a;29:244-245

83. Schulz-Schaeffer J., Webb D.M., Baldridge D.E., Stallknecht G.F., Larson R.A. Registration of Montana-5 grain amaranth germplasm. Crop Sci. 1989b;29:1581

84. Schulz-Schaeffer J., Baldridge D.E., Bowman H.F., Stallknecht G.F., Larson R.A. Registration of ‘Amont’ grain amaranth. Crop Sci. 1991;31:482-483

85. Shadi H., Rouzbehan Y., Rezaei J., Fazaeli H. Yield, chemical composition, fermentation characteristics, in vitro ruminal variables, and degradability of ensiled amaranth (Amaranthus hypochondriacus) cultivars compared with corn (Zea mays) silage. Transl. Anim. Sci. 2020;4:1-12. DOI 10.1093/tas/txaa180

86. Shcherban A.B., Stasyuk A.I. Polymorphism of the squalene synthase gene (SQS) in different species of amaranth (Amaranthus L.). Russ. J. Genet. 2020;56:298-306. DOI 10.31857/S0016675820030145

87. Singh A., Mahato A.K., Maurya A., Rajkumar S., Singh A.K., Bhardwaj R., Kaushik S.K., Kumar S., Gupta V., Singh K., Singh R. Amaranth Genomic Resource Database: an integrated database resource of Amaranth genes and genomics. Front. Plant Sci. 2023;14: 1203855. DOI 10.3389/fpls.2023.1203855

88. Sleugh B.B., Moore K.J., Brummer E.C., Knapp A.D., Russell J., Gibson L. Forage value of various amaranth species at different harvest dates. Crop Sci. 2021;41:466-472. DOI 10.2135/cropsci2001.412466x

89. Smith M.E. The Aztecs. Blackwell, Oxford, 1996

90. Smith T.J. Squalene: potential chemopreventive agent. Expert Opin. Invest. Drugs. 2000;9:1841-1848. DOI 10.1517/13543784.9.8.1841

91. Sokolova D., Zvereva O., Shelenga T., Solovieva A. Comparative characteristics of the amino acid composition in amaranth accessions from the VIR collection. Turk. J. Agric. For. 2021;45:68-78. DOI 10.3906/tar-2007-7

92. Soriano-Garcıa M., Arias-Olguín I.I., Montes J.P.C., Ramırez D.G.R., Silvestre Mendoza Figueroa J., Flores-Valverde E., Rodrguez M.R.V. Nutritional functional value and therapeutic utilization of amaranth. J. Analytical Pharm. Res. 2018;7(5):596-600. DOI 10.15406/japlr.2018.07.00288

93. Sreelathakumary I., Peter K.V. Amaranth-Amaranthus spp. In: Kallo G., Bergh B.O. (Eds.). Genetic Improvement of Vegetable Crops. Oxford: Pergamon Press, 1993; 315-323

94. Stallknecht G.F., Schulz-Schaefer J.R. Amaranth rediscovered. In: Janick J., Simon J.E. (Eds.). New Crops. New York: Wiley, 1993

95. State Register of Selection Achievements Admitted for Usage, 2023. https://gossortrf.ru/publication/reestry.php (date of access: 24.04.2024). (in Russian)

96. Stetter M.G., Zeitler L., Steinhaus A., Kroener K., Biljecki M., Schmid K.J. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front. Plant Sci. 2016;7:816. DOI 10.3389/fpls.2016.00816

97. Sun Y., Yue S. Research on polyploid grain amaranth – a preliminary study on selection of grain amaranth with character of bigger seed (in Chinese). In: Yue S. (Ed.). The Research and Development of Grain Amaranth in China. Beijing, China, 1993

98. Sun G.Q., Ma J., Du W., Wang Y., Li S.L., Xiong Y., Yu X., Lei X., Yabin M.L. Effects of dietary supplementation of Amaranthus hypochondriacus L. on Ruminal fermentation, blood indicators and performance of dairy cows. Chin. J. Animal Nutr. 2017;29:1652-1660

99. Suresh S., Chung J.-W., Cho G.-T., Sung J.-S., Park J.-H., Gwag J.-G., Baek H.-J. Analysis of molecular genetic diversity and population structure in Amaranthus germplasm using SSR markers. Plant Biosyst. - Int. J. Dealing Aspects Plant Biosyst. 2014;148:635-644. DOI 10.1080/11263504.2013.788095

100. Taipova R.M., Musin K.G., Kuluev B.R. Agrobacterium-mediated transformation of Amaranthus cruentus L. epicotils. Zhurnal Sibirskogo Federal’nogo Universiteta. Seriya: Biologiya = Journal of Siberian Federal University Biology. 2020;13:179-187. DOI 10.17516/1997-1389-0292 (in Russian)

101. Taipova R.M., Nesterov V.N., Rozentsvet O.A., Kuluev B.R. Changes in the content of proteins and lipids and in the state of the antioxidant system in mutant forms of Amaranthus cruentus L. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2022;183:76-85. DOI 10.30901/2227-8834-2022-1-76-85 (in Russian)

102. Tamás C., Kisgyörgy B.N., Rakszegi M., Wilkinson M.D., Yang M.-S., Láng L., Tamas L., Bedő Z. Transgenic approach to improve wheat (Triticum aestivum L.) nutritional quality. Plant Cell Rep. 2009;28: 1085-1094. DOI 10.1007/s00299-009-0716-0

103. Tang Y., Tsao R. Phytochemicals in quinoa and amaranth grains and their antioxidant, anti‐inflammatory, and potential health beneficial effects: A review. Mol. Nutr. Food Res. 2017;61:1600767. DOI 10.1002/mnfr.201600767

104. Teutonico R.A., Knorr D. Amaranth: composition, properties and applications of a rediscovered food crop. Food Technol. 1985;1: 49-60

105. Transue D.K., Fairbanks D.J., Robison L.R., Andersen W.R. Species identification by RAPD analysis of grain amaranth genetic resources. Crop Sci. 1994;34:1385. DOI 10.2135/cropsci1994.0011183x003400050044x

106. Venskutonis P.R., Kraujalis P. Nutritional components of amaranth seeds and vegetables: A review on composition, properties, and uses. Compr. Rev. Food Sci. Food Saf. 2013;12:381-412. DOI 10.1111/1541-4337.12021.


Рецензия

Просмотров: 549


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)