Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Substantia nigra alterations in mice modeling Parkinson’s disease

https://doi.org/10.18699/vjgb-24-82

Abstract

Parkinson’s disease (PD) is an age-related neurodegenerative pathology of the central nervous system. The well-known abnormalities characteristic of PD are dysfunctions in the nigrostriatal system including the substantia nigra of the midbrain and the striatum. Moreover, in PD persons, alpha-synucleinopathy is associated with abnormalities in the dopaminergic brain system. To study the mechanisms of this pathology, genetic models in mice have been designed. Transgenic mice of the B6.Cg-Tg(Prnp-SNCA*A53T)23Mkle/J strain (referred to as B6.Cg-Tg further in the text) possess the A53T mutation in the human alpha-synuclein SNCA gene. The density of neurons in the prefrontal cortex, hippocampus, substantia nigra and striatum in B6.Cg-Tg mice was assessed in our previous work, but the dopaminergic system was not studied there, although it plays a key role in the development of PD. The aim of the current study was to investigate motor coordination and body balance, as well as dopaminergic neuronal density and alpha-synuclein accumulation in the substantia nigra in male B6.Cg-Tg mice at the age of six months. Wild-type mice of the same sex and age, siblings of the B6.Cg-Tg mice from the same litters, lacking the SNCA gene with the A53T mutation, but expressing murine alpha-synuclein, were used as controls (referred to as the wild type further in the text). Motor coordination and body balance were assessed with the rota-rod test; the density of dopaminergic neurons and accumulation of alpha-synuclein in the substantia nigra were evaluated by the immunohistochemical method. There was no difference between B6.Cg-Tg mice and WT siblings in motor coordination and body balance. However, accumulation of alpha-synuclein and a decrease in the number of dopaminergic neurons in the substantia nigra were found in the B6.Cg-Tg mouse strain. Thus, the mice of the B6.Cg-Tg strain at the age of six months have some symptoms of the onset of PD, such as the accumulation of mutant alpha-synuclein and a decrease in the number of dopaminergic neurons in the substantia nigra. Taken together, the results obtained in our work qualify the B6.Cg-Tg strain as a pertinent model for studying the early stage of human PD already at the age of six months.

About the Authors

I. N. Rozhkova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. V. Okotrub
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. Yu. Brusentsev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



T. A. Rakhmanova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



D. A. Lebedeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



V. S. Kozeneva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. A. Shavshaeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. V. Khotskin
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



S. Ya. Amstislavsky
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Bae Y.J., Kim J.M., Sohn C.H., Choi J.H., Choi B.S., Song Y.S., Nam Y., Cho S.J., Jeon B., Kim J.H. Imaging the substantia nigra in Parkinson disease and other Parkinsonian syndromes. Radiology. 2021;300:260-278. DOI 10.1148/radiol.2021203341

2. Beitz J.M. Parkinson’s disease: a review. Front. Biosci. (Schol. Ed.). 2014;6:65-74. DOI 10.2741/S415

3. Bidesi N.S., Vang Andersen I., Windhorst A.D., Shalgunov V., Herth M.M. The role of neuroimaging in Parkinson’s disease. J. Neurochem. 2021;159:660-689. DOI 10.1111/jnc.15516

4. Burre J., Sharma M., Sudhof T.C. Cell biology and pathophysiology of α-synuclein. Cold. Spring. Harb. Perspect. Med. 2018;8:a024091. DOI 10.1101/cshperspect.a024091

5. Case L.K., Del Rio R., Bonney E.A., Zachary J.F., Blankenhorn E.P., Tung K.S., Teuscher C. The postnatal maternal environment affects autoimmune disease susceptibility in A/J mice. Cell Immunol. 2010; 260:119-127. DOI 10.1016/j.cellimm.2009.10.002

6. Chen D., Liu Y., Shu G., Chen C., Sullivan D.A., Kam W.R., Hann S., Fowler M., Warman M.L. Ocular manifestations of chordin-like 1 knockout mice. Cornea. 2020;39:1145-1150. DOI 10.1097/ICO.0000000000002371

7. Chia S.J., Tan E.K., Chao Y.X. Historical perspective: models of Parkinson’s disease. Int. J. Mol. Sci. 2020;21:2464. DOI 10.3390/ijms21072464

8. Crabtree D.M., Zhang J. Genetically engineered mouse models of Parkinson’s disease. Brain Res. Bull. 2012;88:13-32. DOI 10.1016/j.brainresbull.2011.07.019

9. Deutch A.Y. Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson’s disease. J. Neural Transm. Suppl. 2006;70:67. DOI 10.1007/978-3-211-45295-0_12

10. Dickson D.W. Neuropathology of Parkinson disease. Parkinsonism Relat. Disord. 2018;46:S30-S33. DOI 10.1016/j.parkreldis.2017. 07.033

11. Dickson D.W., Braak H., Duda J.E., Duyckaerts C., Gasser T., Halliday G.M., Hardy J., Leverenz J.B., Del Tredici K., Wszolek Z.K., Litvan I. Neuropathological assessment of Parkinson’s disease: refining the diagnostic criteria. Lancet Neurol. 2009;8:1150-1157. DOI 10.1016/S1474-4422(09)70238-8

12. Graham D.R., Sidhu A. Mice expressing the A53T mutant form of human alpha-synuclein exhibit hyperactivity and reduced anxietylike behavior. J. Neurosci. Res. 2010;88:1777-1183. DOI 10.1002/jnr.22331

13. Grigoryan G.A., Bazyan A.S. The experimental models of Parkinson’s disease in animals. Uspekhi Fiziologicheskikh Nauk = Progress in Physiological Science. 2007;38:80-88 (in Russian)

14. Halliday G.M., Del Tredici K., Braak H. Critical appraisal of brain pathology staging related to presymptomatic and symptomatic cases of sporadic Parkinson’s disease. J. Neural Transm. Suppl. 2006;70:99. DOI 10.1007/978-3-211-45295-0_16

15. Hayes M.T. Parkinson’s disease and parkinsonism. Am. J. Med. 2019; 132:802-807. DOI 10.1016/j.amjmed.2019.03.001

16. Holmdahl R., Malissen B. The need for littermate controls. Eur. J. Immunol. 2012;42:45-47. DOI 10.1002/eji.201142048

17. Jellinger K.A. Pathology of Parkinson’s disease. Mol. Chem. Neuropath. 1991;14:153-197. DOI 10.1007/bf03159935

18. Kalia L.V., Kalia S.K., McLean P.J., Lozano A.M., Lang A.E. α-Synuclein oligomers and clinical implications for Parkinson disease. Ann. Neurol. 2013;73:155-169. DOI 10.1002/ana.23746

19. Kato M., Kimura M. Effects of reversible blockade of basal ganglia on a voluntary arm movement. J. Neurophysiol. 1992;68:1516-1534. DOI 10.1152/jn.1992.68.5.1516

20. Korchounov A., Meyer M.F., Krasnianski M. Postsynaptic nigrostriatal dopamine receptors and their role in movement regulation. J. Neural Transm. (Vienna). 2010;117:1359-1369. DOI 10.1007/s00702-010-0454-z

21. Korolenko T.A., Shintyapina A.B., Belichenko V.M., Pupyshev A.B., Akopyan A.A., Fedoseeva L.A., Russkikh G.S., Vavilin V.A., Tenditnik M.V., Lin C-L., Amstislavskaya T.G., Tikhonova M.A. Early Parkinson’s disease-like pathology in a transgenic mouse model involves a decreased Cst3 mRNA expression but not neuroinflammatory response in the brain. Med. Univer. 2020;3:66-78. DOI 10.2478/medu-2020-0008

22. Lai T.T., Kim Y.J., Nguyen P.T., Koh Y.H., Nguyen T.T., Ma H.I., Kim Y.E. Temporal evolution of inflammation and neurodegeneration with alpha-synuclein propagation in Parkinson’s disease mouse model. Fron. Int. Neurosci. 2021;15:715190. DOI 10.3389/fnint.2021.715190

23. Langley M.R., Ghaisas S., Palanisamy B.N., Ay M., Jin H., Anantharam V., Kanthasamy A., Kanthasamy A.G. Characterization of nonmotor behavioral impairments and their neurochemical mechanisms in the MitoPark mouse model of progressive neurodegeneration in Parkinson’s disease. Exp. Neurol. 2021;341:113716. DOI 10.1016/j.expneurol.2021.113716

24. Lee F.J., Liu F., Pristupa Z.B., Niznik H.B. Direct binding andfunctional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis. FASEB J. 2001;15:916-926. DOI 10.1096/fj.00-0334com

25. Liu Q., Xu Y., Wan W., Ma Z. An unexpected improvement in spatial learning and memory ability in alpha-synuclein A53T transgenic mice. J. Neural. Transm. (Vienna). 2018;125(2):203-210. DOI 10.1007/s00702-017-1819-3

26. Maric D., Jahanipour J., Li X.R., Singh A., Mobiny A., Van Nguyen H., Sedlock A., Grama K., Roysam B. Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks. Nat. Commun. 2021;12:1550. DOI 10.1038/s41467-021-21735-x

27. Nicholas L.M., Ozanne S.E. Early life programming in mice by maternal overnutrition: mechanistic insights and interventional approaches. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2019;374:20180116. DOI 10.1098/rstb.2018.0116

28. Oaks A.W., Frankfurt M., Finkelstein D.I., Sidhu A. Age-dependent effects of A53T alpha-synuclein on behavior and dopaminergic function. PLoS One. 2013;8:e60378. DOI 10.1371/journal.pone.0060378

29. Paumier K.L., Sukoff Rizzo S.J., Berger Z., Chen Y., Gonzales C., Kaftan E., Li L., Lotarski S., Monaghan M., Shen W., Stolyar P., Vasilyev D., Zaleska M., D Hirst W., Dunlop J. Behavioral characterization of A53T mice reveals early and late stage deficits related to Parkinson’s disease. PLoS One. 2013;8(8):e70274. DOI 10.1371/journal.pone.0070274.

30. Paxinos G., Franklin K. Mouse Brain in Stereotaxic Coordinates. 4th ed. San Diego: Acad. Press, 2012 Poewe W., Seppi K., Tanner C.M., Halliday G.M., Brundin P., Volkmann J., Schrag A.E., Lang A.E. Parkinson disease. Nat. Rev. Dis. Primers. 2017;3:17013. DOI 10.1038/nrdp.2017.13

31. Polymeropoulos M.H., Lavedan C., Leroy E., Ide S.E., Dehejia A., Dutra A., Pike B., Root H., Rubenstein J., Boyer R., Stenroos E.S., Chandrasekharappa S., Athanassiadou A., Papapetropoulos T., Johnson W.G., Lazzarini A.M., Duvoisin R.C., Di Iorio G., Golbe L.I., Nussbaum R.L. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276:2045-2047. DOI 10.1126/science.276.5321.2045

32. Pupyshev A.B., Korolenko T.A., Akopyan A.A., Amstislavskaya T.G., Tikhonova M.A. Suppression of autophagy in the brain of transgenic mice with overexpression of А53Т-mutant α-synuclein as an early event at synucleinopathy progression. Neurosci. Lett. 2018;672: 140-144. DOI 10.1016/j.neulet.2017.12.001

33. Rozhkova I.N., Okotrub S.V., Brusentsev E.Yu., Rakhmanova T.A., Lebedeva D.A., Kozeneva V.S., Khotskin N.V., Amstislavsky S.Ya. Analysis of behavior and brain neuronal density in B6.Cg-Tg(PrnpSNCA*A53T)23Mkle/J mice modeling, a Parkinson’s disease. Rossiyskiy Fiziologicheskiy Zhurnal imeni I.M. Sechenova = Russian Journal of Physiology. 2023;59:1633-1647. DOI 10.31857/S0869813923090091 (in Russian)

34. Schultz W., Ruffieux A., Aebischer P. The activity of pars compacta neurons of the monkey substantia nigra in relation to motor activation. Exp. Brain Res. 1983;51:377-387. DOI 10.1016/0304-3940(84)90456-7

35. Seo J.H., Kang S.W., Kim K., Wi S., Lee J.W., Cho S.R. Environmental enrichment attenuates oxidative stress and alters detoxifying enzymes in an A53T α-synuclein transgenic mouse model of Parkinson’s disease. Antioxidants (Basel). 2020;9:928. DOI 10.3390/antiox9100928

36. Spillantini M.G., Schmidt M.L., Lee V.M., Trojanowski J.Q., Jakes R., Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388: 839-840. DOI 10.1038/42166

37. Stern G. The effects of lesions in the substantia nigra. Brain. 1966;89: 449-478. DOI 10.1093/brain/89.3.449

38. Taguchi T., Ikuno M., Hondo M., Parajuli L.K., Taguchi K., Ueda J., Sawamura M., Okuda S., Nakanishi E., Hara J., Uemura N., Hatanaka Y., Ayaki T., Matsuzawa S., Tanaka M., El-Agnaf O.M.A., Koike M., Yanagisawa M., Uemura M.T., Yamakado H., Takahashi R. α-Synuclein BAC transgenic mice exhibit RBD-like behaviour and hyposmia: a prodromal Parkinson’s disease model. Brain. 2020;143:249-265. DOI 10.1093/brain/awz380

39. Tang H., Gao Y., Zhang Q., Nie K., Zhu R., Gao L., Feng S., Wang L., Zhao J., Huang Z., Zhang Y., Wang L. Chronic cerebral hypoperfusion independently exacerbates cognitive impairment within the pathopoiesis of Parkinson’s disease via microvascular pathologys. Behav. Brain Res. 2017;333:286-294. DOI 10.1016/j.bbr.2017.05.061

40. Tikhonova M.A., Tikhonova N.G., Tenditnik M.V., Ovsyukova M.V., Akopyan A.A., Dubrovina N.I., Amstislavskaya T.G., Khlestkina E.K. Effects of grape polyphenols on the life span and neuroinflammatory alterations related to neurodegenerative Parkinson disease-like disturbances in mice. Molecules. 2020;25:5339. DOI 10.3390/molecules25225339

41. Tran J., Anastacio H., Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020;6:8. DOI 10.1038/s41531-020-0110-8

42. Unger E.L., Eve D.J., Perez X.A., Reichenbach D.K., Xu Y., Lee M.K., Andrews A.M. Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human alpha-synuclein in mice. Neurobiol. Dis. 2006;21:431- 443. DOI 10.1016/j.nbd.2005.08.005

43. Van der Putten H., Wiederhold K.H., Probst A., Barbieri S., Mistl C., Danner S., Kauffmann S., Hofele K., Spooren W.P., Ruegg M.A., Lin S., Caroni P., Sommer B., Tolnay M., Bilbe G. Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 2000;20: 6021-6029. DOI 10.1523/JNEUROSCI.20-16-06021.2000

44. Venda L., Cragg S., Buchman V.L., Wade-Martins R. α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci. 2010;12:559-568. DOI 10.1016/j.tins.2010.09.004

45. Wang Y., Sun Z., Du S., Wei H., Li X., Li X., Shen J., Chen X., Cai Z. The increase of α-synuclein and alterations of dynein in A53T transgenic and aging mouse. J. Clin. Neurosci. 2022;96:154-162. DOI 10.1016/j.jocn.2021.11.002

46. Wu D., Dean J. Maternal factors regulating preimplantation development in mice. Curr. Top. Dev. Biol. 2020;140:317-340. DOI 10.1016/bs.ctdb.2019.10.006

47. Zhang Yu., Wu Q., Zhang L., Wang Q., Yang Z., Liu J., Feng L. Caffeic acid reduces A53T α-synuclein by activating JNK/Bcl-2-mediated autophagy in vitro and improves behaviour and protects dopaminergic neurons in a mouse model of Parkinson’s disease. Pharmacol. Res. 2019;150:104538. DOI 10.1016/j.phrs.2019.104538

48. Zhang Yu., Wu Q., Ren Y., Zhang Y., Feng L. A53T α-synuclein induces neurogenesis impairment and cognitive dysfunction in line M83 transgenic mice and reduces the proliferation of embryonic neural stem cells. Brain Res. Bull. 2022;182:118-129. DOI 10.1016/ j.brainresbull.2022.02.010

49. Zheng M., Liu Y., Xiao Z., Jiao L., Lin X. Tau knockout and α-synuclein A53T synergy modulated parvalbumin-positive neurons degeneration staging in substantia nigra pars reticulata of Parkinson’s disease-liked model. Front. Aging Neurosci. 2022;13:784665. DOI 10.3389/fnagi.2021.784665.


Review

Views: 380


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)