Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Transcription factor TCF4: structure, function, and associated diseases

https://doi.org/10.18699/vjgb-24-85

Abstract

Our understanding of human genes - particularly their structure, functions, and regulatory mechanisms - is still limited. The biological role of approximately 20 % of human proteins has not been established yet, and the molecular functions of the known part of the proteome remain poorly understood. This hinders progress in basic and applied biological and medical sciences, especially in treating hereditary diseases, which are caused by mutations and polymorphic variants in individual genes. Therefore, it is crucial to comprehend the mechanisms of protein functioning to address this problem. This further emphasizes the importance of investigating gene functions and molecular pathogenetic pathways associated with single-gene inherited diseases. This review focuses on the TCF4 gene that encodes a transcription factor crucial for nervous system development and functioning. Pathogenic variants in this gene have been linked to a rare genetic disorder, Pitt–Hopkins syndrome, and TCF4 polymorphic variants are associated with several socially significant diseases, including various psychiatric disorders. The pathogenetic mechanisms of these conditions remain unexplored, and the knowledge about TCF4 upregulation and its target genes is limited. TCF4 can be expressed in various isoforms due to the complex structure and regulation of its gene, which complicates the investigation of the protein’s functions. Here, we consider the structure and functions of the TCF4 transcription factor. We discuss its potential target genes and the possible loss-of-function pathogenetic mechanisms identified in animal and cellular models of Pitt–Hopkins syndrome. The review also examines the advantages and limitations of potential therapies for Pitt–Hopkins syndrome that are based on TCF4 dosage compensation or altering the activity of TCF4 target genes.

About the Authors

R. R. Savchenko
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



N. A. Skryabin
Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences
Russian Federation

Tomsk



References

1. Afshari N.A., Igo R.P., Morris N.J., Stambolian D., Sharma S., Pulagam V.L., Dunn S., Stamler J.F., Truitt B.J., Rimmler J., Kuot A., Croasdale C.R., Qin X., Burdon K.P., Riazuddin S.A., Mills R., Klebe S., Minear M.A., Zhao J., Balajonda E., Rosenwasser G.O., Baratz K.H., Mootha V.V., Patel S.V., Gregory S.G., Bailey-Wilson J.E., Price M.O., Price F.W., Craig J.E., FingertJ.H., Gottsch J.D., Aldave A.J., Klintworth G.K., Lass J.H., Li Y.J., Iyengar S.K. Genome-wide association study identifies three novel loci in Fuchs endothelial corneal dystrophy. Nat. Commun. 2017;8:14898. DOI 10.1038/NCOMMS14898

2. Amiel J., Rio M., De Pontual L., Redon R., Malan V., Boddaert N., Plouin P., Carter N.P., Lyonnet S., Munnich A., Colleaux L. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt-Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 2007;80(5):988-993. DOI 10.1086/515582

3. Baratz K.H., Tosakulwong N., Ryu E., Brown W.L., Branham K., Chen W., Tran K.D., Schmid-Kubista K.E., Heckenlively J.R., Swaroop A., Abecasis G., Bailey K.R., Edwards A.O. E2-2 protein and Fuchs’s corneal dystrophy. N. Engl. J. Med. 2010;363(11):1016- 1024. DOI 10.1056/NEJMoa1007064

4. Bedeschi M.F., Marangi G., Calvello M.R., Ricciardi S., Leone F.P.C., Baccarin M., Guerneri S., Orteschi D., Murdolo M., Lattante S., Frangella S., Keena B., Harr M.H., Zackai E., Zollino M. Impairment of different protein domains causes variable clinical presentation within Pitt-Hopkins syndrome and suggests intragenic molecular syndromology of TCF4. Eur. J. Med. Genet. 2017;60(11):565-571. DOI 10.1016/J.EJMG.2017.08.004

5. Bocharova A.V., Stepanov V.A., Marusin A.V., Kharkov V.N., Vagaitseva K.V., Fedorenko O.Y., Bokhan N.A., Semke A.V., Ivanova S.A. Association study of genetic markers of schizophrenia and its cognitive endophenotypes. Russ. J. Genet. 2017;53(1):139-146. DOI 10.1134/S1022795417010033

6. Brockschmidt A., Todt U., Ryu S., Hoischen A., Landwehr C., Birnbaum S., Frenck W., Radlwimmer B., Lichter P., Engels H., Driever W., Kubisch C., Weber R.G. Severe mental retardation with breathing abnormalities (Pitt–Hopkins syndrome) is caused by haploinsufficiency of the neuronal bHLH transcription factor TCF4. Hum. Mol. Genet. 2007;16(12):1488-1494. DOI 10.1093/HMG/DDM099

7. Chen H.Y., Bohlen J.F., Maher B.J. Molecular and cellular function of transcription factor 4 in Pitt-Hopkins syndrome. Dev. Neurosci. 2021;43(3-4):159-167. DOI 10.1159/000516666

8. Chen T., Wu Q., Zhang Y., Lu T., Yue W., Zhang D. Tcf4 controls neuronal migration of the cerebral cortex through regulation of Bmp7. Front. Mol. Neurosci. 2016;9:94. DOI 10.3389/FNMOL.2016.00094

9. Cleary C.M., James S., Maher B.J., Mulkey D.K. Disordered breathing in a Pitt-Hopkins syndrome model involves Phox2b-expressing parafacial neurons and aberrant Nav1.8 expression. Nat. Commun. 2021;12(1):1-15. DOI 10.1038/s41467-021-26263-2

10. D’Rozario M., Zhang T., Waddell E.A., Zhang Y., Sahin C., Sharoni M., Hu T., Nayal M., Kutty K., Liebl F., Hu W., Marenda D.R. Type I bHLH proteins Daughterless and TCF4 restrict neurite branching and synapse formation by repressing Neurexin in postmitotic neurons. Cell Rep. 2016;15(2):386. DOI 10.1016/J.CELREP.2016.03.034

11. Du J., Aleff R.A., Soragni E., Kalari K., Nie J., Tang X., Davila J., Kocher J.P., Patel S.V., Gottesfeld J.M., Baratz K.H., Wieben E.D. RNA toxicity and missplicing in the common eye disease fuchs endothelial corneal dystrophy. J. Biol. Chem. 2015;290(10):5979-5990. DOI 10.1074/JBC.M114.621607

12. Ekins S., Puhl A.C., Davidow A. Repurposing the dihydropyridine calcium channel inhibitor nicardipine as a Nav1.8 inhibitor in vivo for Pitt Hopkins syndrome. Pharm. Res. 2020;37(7):127. DOI 10.1007/S11095-020-02853-5

13. Ellinghaus D., Folseraas T., Holm K., Ellinghaus E., Melum E., Balschun T., Laerdahl J.K., Shiryaev A., Gotthardt D.N., Weismüller T.J., Schramm C., Wittig M., Bergquist A., Björnsson E., Marschall H.U., Vatn M., Teufel A., Rust C., Gieger C., Wichmann H.E., Runz H., Sterneck M., Rupp C., Braun F., Weersma R.K., Wijmenga C., Ponsioen C.Y., Mathew C.G., Rutgeerts P., Vermeire S., Schrumpf E., Hov J.R., Manns M.P., Boberg K.M., Schreiber S., Franke A., Karlsen T.H. Genome-wide association analysis in primary sclerosing cholangitis and ulcerative colitis identifies risk loci at GPR35 and TCF4. Hepatology. 2013;58(3):1074-1083. DOI 10.1002/HEP.25977

14. Ertl H.C.J. Immunogenicity and toxicity of AAV gene therapy. Front. Immunol. 2022;13:975803. DOI 10.3389/FIMMU.2022.975803

15. Fautsch M.P., Wieben E.D., Baratz K.H., Bhattacharyya N., SadanA.N., Hafford-Tear N.J., Tuft S.J., Davidson A.E. TCF4-mediated Fuchs endothelial corneal dystrophy: insights into a common trinucleotide repeat-associated disease. Prog. Retin. Eye Res. 2021;81:100883. DOI 10.1016/J.PRETEYERES.2020.100883

16. Forrest M.P., Waite A.J., Martin-Rendon E., Blake D.J. Knockdown of human TCF4 affects multiple signaling pathways involved in cell survival, epithelial to mesenchymal transition and neuronal differentiation. PLoS One. 2013;8(8):e73169. DOI 10.1371/JOURNAL.PONE.0073169

17. Forrest M.P., Hill M.J., Kavanagh D.H., Tansey K.E., Waite A.J., Blake D.J. The psychiatric risk gene transcription factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability. Schizophr. Bull. 2018;44(5): 1100-1110. DOI 10.1093/SCHBUL/SBX164

18. Gelernter J., Sun N., Polimanti R., Pietrzak R., Levey D.F., Bryois J., Lu Q., Hu Y., Li B., Radhakrishnan K., Aslan M., Cheung K.H., Li Y., Rajeevan N., Sayward F., Harrington K., Chen Q., Cho K., Pyarajan S., Sullivan P.F., Quaden R., Shi Y., Hunter-Zinck H., Gaziano J.M., Concato J., Zhao H., Stein M.B. Genome-wide association study of post-traumatic stress disorder reexperiencing symptoms in >165,000 US veterans. Nat. Neurosci. 2019;22(9):1394-1401. DOI 10.1038/s41593-019-0447-7

19. Hennig K.M., Fass D.M., Zhao W.-N., Sheridan S.D., Fu T., Erdin S., Stortchevoi A., Lucente D., Cody J.D., Sweetser D., Gusella J.F., Talkowski M.E., Haggarty S.J. WNT/β-catenin pathway and epigenetic mechanisms regulate the Pitt-Hopkins syndrome and schizophrenia risk gene TCF4. Mol. Neuropsychiatry. 2017;3(1):53-71. DOI 10.1159/000475666

20. Hijma H.J., Siebenga P.S., De Kam M.L., Groeneveld G.J. A phase 1, randomized, double-blind, placebo-controlled, crossover study to evaluate the pharmacodynamic effects of VX-150, a highly selective NaV1.8 inhibitor, in healthy male adults. Pain Med. 2021;22(8): 1814-1826. DOI 10.1093/PM/PNAB032

21. Hijma H.J., van Brummelen E.M.J., Siebenga P.S., Groeneveld G.J. A phase I, randomized, double-blind, placebo-controlled, single- and multiple dose escalation study evaluating the safety, pharmacokinetics and pharmacodynamics of VX-128, a highly selective Nav1.8 inhibitor, in healthy adults. Clin. Transl. Sci. 2022;15(4):981-993. DOI 10.1111/CTS.13215

22. Hill M.J., Killick R., Navarrete K., Maruszak A., McLaughlin G.M., Williams B.P., Bray N.J. Knockdown of the schizophrenia susceptibility gene TCF4 alters gene expression and proliferation of progenitor cells from the developing human neocortex. J. Psychiatry Neurosci. 2017;42(3):181-188. DOI 10.1503/JPN.160073

23. Imayoshi I., Kageyama R. bHLH factors in self-renewal, multipotency, and fate choice of neural progenitor cells. Neuron. 2014;82(1):9-23. DOI 10.1016/J.NEURON.2014.03.018

24. Kennedy A.J., Rahn E.J., Paulukaitis B.S., Savell K.E., Kordasiewicz H.B., Wang J., Lewis J.W., Posey J., Strange S.K., GuzmanKarlsson M.C., Phillips S.E., Decker K., Motley S.T., Swayze E.E., Ecker D.J., Michael T.P., Day J.J., Sweatt J.D. Tcf4 regulates synaptic plasticity, DNA methylation, and memory function. Cell Rep. 2016;16(10):2666-2685. DOI 10.1016/J.CELREP.2016.08.004

25. Kim H., Gao E.B., Draper A., Berens N.C., Vihma H., Zhang X., Higashi-Howard A., Ritola K.D., Simon J.M., Kennedy A.J., Philpot B.D. Rescue of behavioral and electrophysiological phenotypes in a Pitt-Hopkins syndrome mouse model by genetic restoration of Tcf4 expression. eLife. 2022;11:e72290. DOI 10.7554/ELIFE.72290

26. Leikas A.J., Ylä-Herttuala S., Hartikainen J.E.K. Adenoviral gene therapy vectors in clinical use – basic aspects with a special reference to replication-competent adenovirus formation and its impact on clinical safety. Int. J. Mol. Sci. 2023;24(22):16519. DOI 10.3390/IJMS242216519

27. Li H., Zhu Y., Morozov Y.M., Chen X., Page S.C., Rannals M.D., Maher B.J., Rakic P. Disruption of TCF4 regulatory networks leads toabnormal cortical development and mental disabilities. Mol. Psychiatry. 2019;24(8):1235-1246. DOI 10.1038/S41380-019-0353-0

28. Li M., Santpere G., Kawasawa Y.I., Evgrafov O.V., Gulden F.O., Pochareddy S., Sunkin S.M., Li Z., Shin Y., Zhu Y., … State M.W., Sanders S.J., Sullivan P.F., Gerstein M.B., Lein E.S., Knowles J.A., Sestan N. Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science. 2018;362(6420): eaat7615. DOI 10.1126/SCIENCE.AAT7615

29. Lundstrom K. Viral vectors in gene therapy: where do we stand in 2023? Viruses. 2023;15(3):698. DOI 10.3390/V15030698

30. Martinowich K., Das D., Sripathy S.R., Mai Y., Kenney R.F., Maher B.J. Evaluation of Nav1.8 as a therapeutic target for Pitt Hopkins Syndrome. Mol. Psychiatry. 2022;28(1):76-82. DOI 10.1038/s41380-022-01811-4

31. Mesman S., Bakker R., Smidt M.P. Tcf4 is required for correct brain development during embryogenesis. Mol. Cell. Neurosci. 2020;106: 103502. DOI 10.1016/J.MCN.2020.103502

32. Papanyan S.S., Astakhov S.Yu., Nazarov V.D., Lapin S.V., Novikov S.A., Riks I.A., Anikina L.K., Dovydenko K.S. Expansion of trinucleotide CTG repeats in the TCF4 gene as a marker of Fuchs’ endothelial corneal dystrophy. Ophthalmology Journal. 2019;12(2): 11-18. DOI 10.17816/OV2019211-18

33. Papes F., Camargo A.P., de Souza J.S., Carvalho V.M.A., Szeto R.A., LaMontagne E., Teixeira J.R., Avansini S.H., Sánchez-Sánchez S.M., Nakahara T.S., Santo C.N., Wu W., Yao H., Araújo B.M.P., Velho P.E.N.F., Haddad G.G., Muotri A.R. Transcription factor 4 lossof-function is associated with deficits in progenitor proliferation and cortical neuron content. Nat. Commun. 2022;13(1):2387. DOI 10.1038/s41467-022-29942-w

34. Phan B.D.N., Bohlen J.F., Davis B.A., Ye Z., Chen H.Y., Mayfield B., Sripathy S.R., Cerceo Page S., Campbell M.N., Smith H.L., Gallop D., Kim H., Thaxton C.L., Simon J.M., Burke E.E., Shin J.H., Kennedy A.J., Sweatt J.D., Philpot B.D., Jaffe A.E., Maher B.J. A myelin-related transcriptomic profile is shared by Pitt-Hopkins syndrome models and human autism spectrum disorder. Nat. Neurosci. 2020;23(3):375-385. DOI 10.1038/S41593-019-0578-X

35. Rannals M.D.D., Hamersky G.R.R., Page S.C.C., Campbell M.N.N., Briley A., Gallo R.A.A., Phan B.D.N., Hyde T.M.M., Kleinman J.E.E., Shin J.H.H., Jaffe A.E.E., Weinberger D.R.R., Maher B.J.J. Psychiatric Risk Gene Transcription Factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1. Neuron. 2016;90(1):43-55. DOI 10.1016/J.NEURON. 2016.02.021

36. Ripke S., Sanders A.R., Kendler K.S., Levinson D.F., Sklar P., Holmans P.A., Lin D.Y., Duan J., Ophoff R.A., Andreassen O.A., … Williams N.M., Wormley B., Zammit S., Sullivan P.F., O’Donovan M.C., Daly M.J., Gejman P.V. Genome-wide association study identifies five new schizophrenia loci. Nat. Genet. 2011;43(10):969-976. DOI 10.1038/ng.940

37. Rosenfeld J.A., Leppig K., Ballif B.C., Thiese H., Erdie-Lalena C., Bawle E., Sastry S., Spence J.E., Bandholz A., Surti U., Zonana J., Keller K., Meschino W., Bejjani B.A., Torchia B.S., Shaffer L.G. Genotype-phenotype analysis of TCF4 mutations causing PittHopkins syndrome shows increased seizure activity with missense mutations. Genet. Med. 2009;11(11):797-805. DOI 10.1097/GIM. 0B013E3181BD38A9

38. Schmidt-Edelkraut U., Daniel G., Hoffmann A., Spengler D. Zac1 regulates cell cycle arrest in neuronal progenitors via Tcf4. Mol. Cell. Biol. 2014;34(6):1020. DOI 10.1128/MCB.01195-13

39. Schoof M., Hellwig M., Harrison L., Holdhof D., Lauffer M.C., Niesen J., Virdi S., Indenbirken D., Schüller U. The basic helix-loophelix transcription factor TCF4 impacts brain architecture as well as neuronal morphology and differentiation. Eur. J. Neurosci. 2020; 51(11):2219-2235. DOI 10.1111/EJN.14674

40. Sepp M., Kannike K., Eesmaa A., Urb M., Timmusk T. Functional diversity of human basic helix-loop-helix transcription factor TCF4 isoforms generated by alternative 5ʹ exon usage and splicing. PLoS One. 2011;6(7):e22138. DOI 10.1371/JOURNAL.PONE.0022138

41. Sepp M., Pruunsild P., Timmusk T. Pitt-Hopkins syndrome-associated mutations in TCF4 lead to variable impairment of the transcription factor function ranging from hypomorphic to dominant-negative effects. Hum. Mol. Genet. 2012;21(13):2873-2888. DOI 10.1093/ HMG/DDS112

42. Sepp M., Vihma H., Nurm K., Urb M., Page S.C., Roots K., Hark A., Maher B.J., Pruunsild P., Timmusk T. The intellectual disability and schizophrenia associated transcription factor TCF4 is regulated by neuronal activity and protein kinase A. J. Neurosci. 2017;37(43): 10516-10527. DOI 10.1523/JNEUROSCI.1151-17.2017

43. Smoller J.W., Kendler K.K., Craddock N., Lee P.H., Neale B.M., Nurnberger J.N., Ripke S., Santangelo S., Sullivan P.S., Neale B.N., Purcell S., Anney R., Buitelaar J., Fanous A., Faraone S.F., Hoogendijk W., Lesch K.P., Levinson D.L., Perlis R.P., Rietschel M., Riley B., Sonuga-Barke E., Schachar R., Schulze T.G., Thapar A., Smoller J.S., Neale M., Perlis R., Bender P., Cichon S., Daly M.D., Kelsoe J., Lehner T., Levinson D., O’Donovan Mick, Gejman P., Sebat J., Sklar P., Devlin B., Sullivan P., O’Donovan Michael. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381(9875):1371- 1379. DOI 10.1016/S0140-6736(12)62129-1

44. Stefansson H., Ophoff R.A., Steinberg S., Andreassen O.A., Cichon S., Rujescu D., Werge T., Pietiläinen O.P.H., Mors O., Mortensen P.B., … Van Os J., Wiersma D., Bruggeman R., Cahn W., De Haan L., Krabbendam L., Myin-Germeys I. Common variants conferring risk of schizophrenia. Nature. 2009;460(7256):744-747. DOI 10.1038/NATURE08186

45. Steinberg S., de Jong S., Andreassen O.A., Werge T., Børglum A.D., Mors O., Mortensen P.B., Gustafsson O., Costas J., Pietiläinen O.P.H., … Collier D.A., St Clair D., Rietschel M., Cichon S., Stefansson H., Rujescu D., Stefansson K. Common variants at VRK2 and TCF4 conferring risk of schizophrenia. Hum. Mol. Genet. 2011; 20(20):4076-4081. DOI 10.1093/HMG/DDR325

46. Tamberg L., Jaago M., Säälik K., Sirp A., Tuvikene J., Shubina A., Kiir C.S., Nurm K., Sepp M., Timmusk T., Palgi M. Daughterless, the Drosophila orthologue of TCF4, is required for associative learning and maintenance of the synaptic proteome. DMM: Dis. Model. Mech. 2020;13(7):dmm042747. DOI 10.1242/dmm.042747

47. Teixeira J.R., Szeto R.A., Carvalho V.M.A., Muotri A.R., Papes F. Transcription factor 4 and its association with psychiatric disorders. Transl. Psychiatry. 2021;11(1):19. DOI 10.1038/s41398-020-01138-0

48. Thaxton C., Kloth A.D., Clark E.P., Moy S.S., Chitwood R.A., Philpot B.D. Common pathophysiology in multiple mouse models of Pitt-Hopkins syndrome. J. Neurosci. 2018;38(4):918-936. DOI 10.1523/JNEUROSCI.1305-17.2017

49. Torshizi A.D., Armoskus C., Zhang H., Forrest M.P., Zhang S., Souaiaia T., Evgrafov O.V., Knowles J.A., Duan J., Wang K. Deconvolution of transcriptional networks identifies TCF4 as a master regulator in schizophrenia. Sci. Adv. 2019;5(9):eaau4139. DOI 10.1126/SCIADV.AAU4139

50. Wang Y., Lu Z., Zhang Yilan, Cai Y., Yun D., Tang T., Cai Z., Wang C., Zhang Yandong, Fang F., Yang Z., Behnisch T., Xie Y. Transcription factor 4 safeguards hippocampal dentate gyrus development by regulating neural progenitor migration. Cereb. Cortex. 2020;30(5): 3102-3115. DOI 10.1093/CERCOR/BHZ297

51. Wedel M., Fröb F., Elsesser O., Wittmann M.T., Lie D.C., Reis A., Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res. 2020;48(9):4839-4857. DOI 10.1093/NAR/GKAA218

52. Wittmann M.T., Häberle B.M. Linking the neuropsychiatric disease gene TCF4 to neuronal activity-dependent regulatory networks. J. Neurosci. 2018;38(11):2653. DOI 10.1523/JNEUROSCI.3475-17.2018

53. Wray N.R., Ripke S., Mattheisen M., Trzaskowski M., Byrne E.M., Abdellaoui A., Adams M.J., Agerbo E., Air T.M., Andlauer T.M.F., … Werge T., Winslow A.R., Lewis C.M., Levinson D.F., Breen G., Børglum A.D., Sullivan P.F. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat. Genet. 2018;50(5):668-681. DOI 10.1038/s41588-018-0090-3

54. Xia H., Jahr F.M., Kim N.K., Xie L., Shabalin A.A., Bryois J., Sweet D.H., Kronfol M.M., Palasuberniam P., McRae M.P., Riley B.P., Sullivan P.F., Van Den Oord E.J., McClay J.L. Building a schizophrenia genetic network: transcription factor 4 regulates genes involved in neuronal development and schizophrenia risk. Hum. Mol. Genet. 2018;27(18):3246-3256. DOI 10.1093/HMG/DDY222

55. Zweier C., Peippo M.M., Hoyer J., Sousa S., Bottani A., ClaytonSmith J., Reardon W., Saraiva J., CabralA., Göhring I., Devriendt K., De Ravel T., Bijlsma E.K., Hennekam R.C.M., Orrico A., Cohen M., Dreweke A., Reis A., Nurnberg P., Rauch A. Haploinsufficiency of TCF4 causes syndromal mental retardation with intermittent hyperventilation (Pitt-Hopkins syndrome). Am. J. Hum. Genet. 2007; 80(5):994-1001. DOI 10.1086/515583.


Review

Views: 374


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)