1. Ackermann A.M., Wang Z., Schug J., Naji A., Kaestner K.H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 2016;5(3):233-244. https://doi.org/10.1016/j.molmet.2016.01.002
2. Aibar S., González-Blas C.B., Moerman T., Huynh-Thu V.A., Imrichova H., Hulselmans G., Rambow F., Marine J., Geurts P., Aerts J., Van Den Oord J., Atak Z.K., Wouters J., Aerts S. SCENIC: singlecell regulatory network inference and clustering. Nat. Methods. 2017;14(11):1083-1086. https://doi.org/10.1038/nmeth.4463
3. Altay G. Empirically determining the sample size for large-scale gene network inference algorithms. IET Syst. Biol. 2012;6(2):35-43. https://doi.org/10.1049/iet-syb.2010.0091
4. Angermueller C., Clark S.J., Lee H.J., Macaulay I.C., Teng M.J., Hu T.X., Krueger F., Smallwood S.A., Ponting C.P., Voet T., Kelsey G., Stegle O., Reik W. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods. 2016; 13(3):229-232. https://doi.org/10.1038/nmeth.3728
5. Argelaguet R., Cuomo A.S.E., Stegle O., Marioni J.C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 2021;39(10):1202-1215. https://doi.org/10.1038/s41587-021-00895-7
6. Aubin-Frankowski P., Vert J. Gene regulation inference from singlecell RNA-seq data with linear differential equations and velocity inference. Bioinformatics. 2020;36(18):4774-4780. https://doi.org/10.1093/bioinformatics/btaa576
7. Badia-i-Mompel P., Wessels L., Müller-Dott S., Trimbour R., Flores R.O.R., Argelaguet R., Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 2023;24(11):739-754. https://doi.org/10.1038/s41576-023-00618-5
8. Blencowe M., Arneson D., Ding J., Chen Y.W., Saleem Z., Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg. Top. Life Sci. 2019;3(4):379-398. https://doi.org/10.1042/ETLS20180176
9. Bonnaffoux A., Herbach U., Richard A., Guillemin A., Gonin-Giraud S., Gros P., Gandrillon O. WASABI: a dynamic iterative framework for gene regulatory network inference. BMC Bioinformatics. 2019;20(1):220. https://doi.org/10.1186/s12859-019-2798-1
10. Buenrostro J.D., Wu B., Litzenburger U.M., Ruff D., Gonzales M.L., Snyder M.P., Chang H.Y., Greenleaf W.J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-490. https://doi.org/10.1038/nature14590
11. Chan T.E., Stumpf M.P., Babtie A.C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017;5(3):251-267.e3. https://doi.org/10.1016/j.cels.2017.08.014
12. Chang L., Hao T., Wang W., Lin C. Inference of single-cell network using mutual information for scRNA-seq data analysis. BMC Bioinformatics. 2024;25(S2):292. https://doi.org/10.1186/s12859-024-05895-3
13. Chen S., Mar J.C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics. 2018;19(1):232. https://doi.org/10.1186/s12859-018-2217-z
14. Chen S., Lake B.B., Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 2019;37(12):1452-1457. https://doi.org/10.1038/s41587-019-0290-0
15. Gao N.P., Ud-Dean S.M.M., Gandrillon O., Gunawan R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics. 2017;34(2):258-266. https://doi.org/10.1093/bioinformatics/btx575
16. Herbach U., Bonnaffoux A., Espinasse T., Gandrillon O. Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC Syst. Biol. 2017;11(1):105. https://doi.org/10.1186/s12918-017-0487-0
17. Hong S., Chen X., Jin L., Xiong M. Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res. 2013;41(8): e95. https://doi.org/10.1093/nar/gkt145
18. Hou W., Ji Z., Chen Z., Wherry E.J., Hicks S.C., Ji H. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Nat. Commun. 2023;14(1):7286. https://doi.org/10.1038/s41467-023-42841-y
19. Hu Y., Huang K., An Q., Du G., Hu G., Xue J., Zhu X., Wang C., Xue Z., Fan G. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17(1):88. https://doi.org/10.1186/s13059-016-0950-z
20. Huynh-Thu V.A., Geurts P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 2018;8(1):3384. https://doi.org/10.1038/s41598-018-21715-0
21. Huynh-Thu V.A., Sanguinetti G. Gene regulatory network inference: An introductory survey. Methods Mol. Biol. 2019;1883:1-23. https://doi.org/10.1007/978-1-4939-8882-2_1
22. Huynh-Thu V.A., Irrthum A., Wehenkel L., Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776. https://doi.org/10.1371/journal.pone.0012776
23. Isbel L., Grand R.S., Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 2022;23(12):728-740. https://doi.org/10.1038/s41576-022-00512-6
24. Kang Y., Thieffry D., Cantini L. Evaluating the reproducibility of single-cell gene regulatory network inference algorithms. Front. Genet. 2021;12:617282. https://doi.org/10.3389/fgene.2021.617282
25. Kim S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods. 2015;22(6):665-674. https://doi.org/10.5351/CSAM.2015.22.6.665
26. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833-850 (in Russian)]
27. Li Y., Ma A., Wang Y., Guo Q., Wang C., Fu H., Liu B., Ma Q. Enhancerdriven gene regulatory networks inference from single-cell RNAseq and ATAC-seq data. Brief. Bioinform. 2024;25(5):bbae369. https://doi.org/10.1093/bib/bbae369
28. Loers J.U., Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief. Bioinform. 2024;25(5):bbae382. https://doi.org/10.1093/bib/bbae382
29. Luecken M.D., Theis F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 2019;15(6):e8746. https://doi.org/10.15252/msb.20188746
30. Malekpour S.A., Alizad-Rahvar A.R., Sadeghi M. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks. BMC Bioinformatics. 2020;21(1):318. https://doi.org/10.1186/s12859-020-03651-x
31. Matsumoto H., Kiryu H., Furusawa C., Ko M.S.H., Ko S.B.H., Gouda N., Hayashi T., Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314-2321. https://doi.org/10.1093/bioinformatics/btx194
32. Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: A practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. https://doi.org/10.1016/j.bbagrm.2019.194430
33. Moerman T., Santos S.A., González-Blas C.B., Simm J., Moreau Y., Aerts J., Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2018; 35(12):2159-2161. https://doi.org/10.1093/bioinformatics/bty916
34. Nguyen H., Shrestha S., Tran D., Shafi A., Draghici S., Nguyen T. A comprehensive survey of tools and software for active subnetwork identification. Front. Genet. 2019;10:155. https://doi.org/10.3389/fgene.2019.00155
35. Nguyen H., Tran D., Tran B., Pehlivan B., Nguyen T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief. Bioinform. 2021;22(3):bbaa190. https://doi.org/10.1093/bib/bbaa190
36. Parmar J.J., Padinhateeri R. Nucleosome positioning and chromatin organization. Curr. Opin. Struct. Biol. 2020;64:111-118. https://doi.org/10.1016/j.sbi.2020.06.021
37. Pratapa A., Jalihal A.P., Law J.N., Bharadwaj A., Murali T.M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods. 2020;17(2):147-154. https://doi.org/10.1038/s41592-019-0690-6
38. Qin J., Hu Y., Xu F., Yalamanchili H.K., Wang J. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods. 2014;67(3):294-303. https://doi.org/10.1016/j.ymeth.2014.03.006
39. Qiu X., Rahimzamani A., Wang L., Ren B., Mao Q., Durham T., McFaline-Figueroa J.L., Saunders L., Trapnell C., Kannan S. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst. 2020;10(3):265-274. https://doi.org/10.1016/j.cels.2020.02.003
40. Saelens W., Cannoodt R., Todorov H., Saeys Y. A comparison of singlecell trajectory inference methods. Nat. Biotechnol. 2019;37(5):547-554. https://doi.org/10.1038/s41587-019-0071-9
41. Sanchez-Castillo M., Blanco D., Tienda-Luna I.M., Carrion M.C., Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics. 2017;34(6):964-970. https://doi.org/10.1093/bioinformatics/btx605
42. Sekula M., Gaskins J., Datta S. A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data. BMC Bioinformatics. 2020;21(1):361. https://doi.org/10.1186/s12859-020-03707-y
43. Shalek A.K., Satija R., Shuga J., Trombetta J.J., Gennert D., Lu D., Chen P., Gertner R.S., Gaublomme J.T., Yosef N., Schwartz S., Fowler B., Weaver S., Wang J., Wang X., Ding R., Raychowdhury R., Friedman N., Hacohen N., Park H., May A.P., Regev A. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510(7505):363-369. https://doi.org/10.1038/nature13437
44. Sönmezer C., Kleinendorst R., Imanci D., Barzaghi G., Villacorta L., Schübeler D., Benes V., Molina N., Krebs A.R. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell. 2020;81(2):255-267. https://doi.org/10.1016/j.molcel.2020.11.015
45. Specht A.T., Li J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics. 2017;33(5):764-766. https://doi.org/10.1093/bioinformatics/btw729
46. Stock M., Popp N., Fiorentino J., Scialdone A. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Bioinformatics. 2024;40(5):btae267. https://doi.org/10.1093/bioinformatics/btae267
47. Tang F., Barbacioru C., Wang Y., Nordman E., Lee C., Xu N., Wang X., Bodeau J., Tuch B.B., Siddiqui A., Lao K., Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods. 2009; 6(5):377-382. https://doi.org/10.1038/nmeth.1315
48. Tieri P., Castiglione F. Modeling macrophage differentiation and cellular dynamics. In: Wolkenhauer O. (Ed.). Systems Medicine. Integrative, Qualitative and Computational Approaches. Academic Press, 2021;511-520. https://doi.org/10.1016/B978-0-12-801238-3.11644-7
49. Van de Sande B., Flerin C., Davie K., De Waegeneer M., Hulselmans G., Aibar S., Seurinck R., Saelens W., Cannoodt R., Rouchon Q., Verbeiren T., De Maeyer D., Reumers J., Saeys Y., Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 2020;15(7):2247-2276. https://doi.org/10.1038/s41596-020-0336-2
50. Wagner A., Regev A., Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 2016;34(11):1145-1160. https://doi.org/10.1038/nbt.3711
51. Wang P., Qin J., Qin Y., Zhu Y., Wang L.Y., Li M.J., Zhang M.Q., Wang J. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 2015;43(W1):264-269. https://doi.org/10.1093/nar/gkv398
52. Woodhouse S., Piterman N., Wintersteiger C.M., Göttgens B., Fisher J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol. 2018; 2(1):59. https://doi.org/10.1186/s12918-018-0581-y
53. Zhang S., Pyne S., Pietrzak S., Halberg S., McCalla S.G., Siahpirani A.F., Sridharan R., Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat. Commun. 2023;14(1):3064. https://doi.org/10.1038/s41467-023-38637-9