Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Reconstruction of gene regulatory networks from single cell transcriptomic data

https://doi.org/10.18699/vjgb-24-104

Abstract

Gene regulatory networks (GRNs) – interpretable graph models of gene expression regulation – are a pivotal tool for understanding and investigating the mechanisms utilized by cells during development and in response to various internal and external stimuli. Historically, the first approach for the GRN reconstruction was based on the analysis of published data (including those summarized in databases). Currently, the primary GRN inference approach is the analysis of omics (mainly transcriptomic) data; a number of mathematical methods have been adapted for that. Obtaining omics data for individual cells has made it possible to conduct large-scale molecular genetic studies with an extremely high resolution. In particular, it has become possible to reconstruct GRNs for individual cell types and for various cell states. However, technical and biological features of single-cell omics data require specific approaches for GRN inference. This review describes the approaches and programs that are used to reconstruct GRNs from single-cell RNA sequencing (scRNA-seq) data. We consider the advantages of using scRNA-seq data compared to bulk RNA-seq, as well as challenges in GRN inference. We pay specific attention to state-of-the-art methods for GRN reconstruction from single-cell transcriptomes recruiting other omics data, primarily transcription factor binding sites and open chromatin profiles (scATAC-seq), in order to increase inference accuracy. The review also considers the applicability of GRNs reconstructed from single-cell omics data to recover and characterize various biological processes. Future perspectives in this area are discussed.

About the Authors

M. A. Rybakov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



N. A. Omelyanchuk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. V. Zemlyanskaya
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Ackermann A.M., Wang Z., Schug J., Naji A., Kaestner K.H. Integration of ATAC-seq and RNA-seq identifies human alpha cell and beta cell signature genes. Mol. Metab. 2016;5(3):233-244. doi 10.1016/j.molmet.2016.01.002

2. Aibar S., González-Blas C.B., Moerman T., Huynh-Thu V.A., Imrichova H., Hulselmans G., Rambow F., Marine J., Geurts P., Aerts J., Van Den Oord J., Atak Z.K., Wouters J., Aerts S. SCENIC: singlecell regulatory network inference and clustering. Nat. Methods. 2017;14(11):1083-1086. doi 10.1038/nmeth.4463

3. Altay G. Empirically determining the sample size for large-scale gene network inference algorithms. IET Syst. Biol. 2012;6(2):35-43. doi 10.1049/iet-syb.2010.0091

4. Angermueller C., Clark S.J., Lee H.J., Macaulay I.C., Teng M.J., Hu T.X., Krueger F., Smallwood S.A., Ponting C.P., Voet T., Kelsey G., Stegle O., Reik W. Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity. Nat. Methods. 2016; 13(3):229-232. doi 10.1038/nmeth.3728

5. Argelaguet R., Cuomo A.S.E., Stegle O., Marioni J.C. Computational principles and challenges in single-cell data integration. Nat. Biotechnol. 2021;39(10):1202-1215. doi 10.1038/s41587-021-00895-7

6. Aubin-Frankowski P., Vert J. Gene regulation inference from singlecell RNA-seq data with linear differential equations and velocity inference. Bioinformatics. 2020;36(18):4774-4780. doi 10.1093/bioinformatics/btaa576

7. Badia-i-Mompel P., Wessels L., Müller-Dott S., Trimbour R., Flores R.O.R., Argelaguet R., Saez-Rodriguez J. Gene regulatory network inference in the era of single-cell multi-omics. Nat. Rev. Genet. 2023;24(11):739-754. doi 10.1038/s41576-023-00618-5

8. Blencowe M., Arneson D., Ding J., Chen Y.W., Saleem Z., Yang X. Network modeling of single-cell omics data: challenges, opportunities, and progresses. Emerg. Top. Life Sci. 2019;3(4):379-398. doi 10.1042/ETLS20180176

9. Bonnaffoux A., Herbach U., Richard A., Guillemin A., Gonin-Giraud S., Gros P., Gandrillon O. WASABI: a dynamic iterative framework for gene regulatory network inference. BMC Bioinformatics. 2019;20(1):220. doi 10.1186/s12859-019-2798-1

10. Buenrostro J.D., Wu B., Litzenburger U.M., Ruff D., Gonzales M.L., Snyder M.P., Chang H.Y., Greenleaf W.J. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature. 2015; 523(7561):486-490. doi 10.1038/nature14590

11. Chan T.E., Stumpf M.P., Babtie A.C. Gene regulatory network inference from single-cell data using multivariate information measures. Cell Syst. 2017;5(3):251-267.e3. doi 10.1016/j.cels.2017.08.014

12. Chang L., Hao T., Wang W., Lin C. Inference of single-cell network using mutual information for scRNA-seq data analysis. BMC Bioinformatics. 2024;25(S2):292. doi 10.1186/s12859-024-05895-3

13. Chen S., Mar J.C. Evaluating methods of inferring gene regulatory networks highlights their lack of performance for single cell gene expression data. BMC Bioinformatics. 2018;19(1):232. doi 10.1186/s12859-018-2217-z

14. Chen S., Lake B.B., Zhang K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 2019;37(12):1452-1457. doi 10.1038/s41587-019-0290-0

15. Gao N.P., Ud-Dean S.M.M., Gandrillon O., Gunawan R. SINCERITIES: inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles. Bioinformatics. 2017;34(2):258-266. doi 10.1093/bioinformatics/btx575

16. Herbach U., Bonnaffoux A., Espinasse T., Gandrillon O. Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC Syst. Biol. 2017;11(1):105. doi 10.1186/s12918-017-0487-0

17. Hong S., Chen X., Jin L., Xiong M. Canonical correlation analysis for RNA-seq co-expression networks. Nucleic Acids Res. 2013;41(8): e95. doi 10.1093/nar/gkt145

18. Hou W., Ji Z., Chen Z., Wherry E.J., Hicks S.C., Ji H. A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples. Nat. Commun. 2023;14(1):7286. doi 10.1038/s41467-023-42841-y

19. Hu Y., Huang K., An Q., Du G., Hu G., Xue J., Zhu X., Wang C., Xue Z., Fan G. Simultaneous profiling of transcriptome and DNA methylome from a single cell. Genome Biol. 2016;17(1):88. doi 10.1186/s13059-016-0950-z

20. Huynh-Thu V.A., Geurts P. dynGENIE3: dynamical GENIE3 for the inference of gene networks from time series expression data. Sci. Rep. 2018;8(1):3384. doi 10.1038/s41598-018-21715-0

21. Huynh-Thu V.A., Sanguinetti G. Gene regulatory network inference: An introductory survey. Methods Mol. Biol. 2019;1883:1-23. doi 10.1007/978-1-4939-8882-2_1

22. Huynh-Thu V.A., Irrthum A., Wehenkel L., Geurts P. Inferring regulatory networks from expression data using tree-based methods. PLoS One. 2010;5(9):e12776. doi 10.1371/journal.pone.0012776

23. Isbel L., Grand R.S., Schübeler D. Generating specificity in genome regulation through transcription factor sensitivity to chromatin. Nat. Rev. Genet. 2022;23(12):728-740. doi 10.1038/s41576-022-00512-6

24. Kang Y., Thieffry D., Cantini L. Evaluating the reproducibility of single-cell gene regulatory network inference algorithms. Front. Genet. 2021;12:617282. doi 10.3389/fgene.2021.617282

25. Kim S. ppcor: An R package for a fast calculation to semi-partial correlation coefficients. Commun. Stat. Appl. Methods. 2015;22(6):665-674. doi 10.5351/CSAM.2015.22.6.665

26. Kolchanov N.A., Ignatieva E.V., Podkolodnaya O.A., Likhoshvai V.A., Matushkin Yu.G. Gene networks. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2013;17(4/2): 833-850 (in Russian)]

27. Li Y., Ma A., Wang Y., Guo Q., Wang C., Fu H., Liu B., Ma Q. Enhancerdriven gene regulatory networks inference from single-cell RNAseq and ATAC-seq data. Brief. Bioinform. 2024;25(5):bbae369. doi 10.1093/bib/bbae369

28. Loers J.U., Vermeirssen V. A single-cell multimodal view on gene regulatory network inference from transcriptomics and chromatin accessibility data. Brief. Bioinform. 2024;25(5):bbae382. doi 10.1093/bib/bbae382

29. Luecken M.D., Theis F.J. Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 2019;15(6):e8746. doi 10.15252/msb.20188746

30. Malekpour S.A., Alizad-Rahvar A.R., Sadeghi M. LogicNet: probabilistic continuous logics in reconstructing gene regulatory networks. BMC Bioinformatics. 2020;21(1):318. doi 10.1186/s12859-020-03651-x

31. Matsumoto H., Kiryu H., Furusawa C., Ko M.S.H., Ko S.B.H., Gouda N., Hayashi T., Nikaido I. SCODE: an efficient regulatory network inference algorithm from single-cell RNA-Seq during differentiation. Bioinformatics. 2017;33(15):2314-2321. doi 10.1093/bioinformatics/btx194

32. Mercatelli D., Scalambra L., Triboli L., Ray F., Giorgi F.M. Gene regulatory network inference resources: A practical overview. Biochim. Biophys. Acta Gene Regul. Mech. 2020;1863(6):194430. doi 10.1016/j.bbagrm.2019.194430

33. Moerman T., Santos S.A., González-Blas C.B., Simm J., Moreau Y., Aerts J., Aerts S. GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics. 2018; 35(12):2159-2161. doi 10.1093/bioinformatics/bty916

34. Nguyen H., Shrestha S., Tran D., Shafi A., Draghici S., Nguyen T. A comprehensive survey of tools and software for active subnetwork identification. Front. Genet. 2019;10:155. doi 10.3389/fgene.2019.00155

35. Nguyen H., Tran D., Tran B., Pehlivan B., Nguyen T. A comprehensive survey of regulatory network inference methods using single cell RNA sequencing data. Brief. Bioinform. 2021;22(3):bbaa190. doi 10.1093/bib/bbaa190

36. Parmar J.J., Padinhateeri R. Nucleosome positioning and chromatin organization. Curr. Opin. Struct. Biol. 2020;64:111-118. doi 10.1016/j.sbi.2020.06.021

37. Pratapa A., Jalihal A.P., Law J.N., Bharadwaj A., Murali T.M. Benchmarking algorithms for gene regulatory network inference from single-cell transcriptomic data. Nat. Methods. 2020;17(2):147-154. doi 10.1038/s41592-019-0690-6

38. Qin J., Hu Y., Xu F., Yalamanchili H.K., Wang J. Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. Methods. 2014;67(3):294-303. doi 10.1016/j.ymeth.2014.03.006

39. Qiu X., Rahimzamani A., Wang L., Ren B., Mao Q., Durham T., McFaline-Figueroa J.L., Saunders L., Trapnell C., Kannan S. Inferring causal gene regulatory networks from coupled single-cell expression dynamics using scribe. Cell Syst. 2020;10(3):265-274. doi 10.1016/j.cels.2020.02.003

40. Saelens W., Cannoodt R., Todorov H., Saeys Y. A comparison of singlecell trajectory inference methods. Nat. Biotechnol. 2019;37(5):547-554. doi 10.1038/s41587-019-0071-9

41. Sanchez-Castillo M., Blanco D., Tienda-Luna I.M., Carrion M.C., Huang Y. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data. Bioinformatics. 2017;34(6):964-970. doi 10.1093/bioinformatics/btx605

42. Sekula M., Gaskins J., Datta S. A sparse Bayesian factor model for the construction of gene co-expression networks from single-cell RNA sequencing count data. BMC Bioinformatics. 2020;21(1):361. doi 10.1186/s12859-020-03707-y

43. Shalek A.K., Satija R., Shuga J., Trombetta J.J., Gennert D., Lu D., Chen P., Gertner R.S., Gaublomme J.T., Yosef N., Schwartz S., Fowler B., Weaver S., Wang J., Wang X., Ding R., Raychowdhury R., Friedman N., Hacohen N., Park H., May A.P., Regev A. Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature. 2014;510(7505):363-369. doi 10.1038/nature13437

44. Sönmezer C., Kleinendorst R., Imanci D., Barzaghi G., Villacorta L., Schübeler D., Benes V., Molina N., Krebs A.R. Molecular co-occupancy identifies transcription factor binding cooperativity in vivo. Mol. Cell. 2020;81(2):255-267. doi 10.1016/j.molcel.2020.11.015

45. Specht A.T., Li J. LEAP: constructing gene co-expression networks for single-cell RNA-sequencing data using pseudotime ordering. Bioinformatics. 2017;33(5):764-766. doi 10.1093/bioinformatics/btw729

46. Stock M., Popp N., Fiorentino J., Scialdone A. Topological benchmarking of algorithms to infer gene regulatory networks from single-cell RNA-seq data. Bioinformatics. 2024;40(5):btae267. doi 10.1093/bioinformatics/btae267

47. Tang F., Barbacioru C., Wang Y., Nordman E., Lee C., Xu N., Wang X., Bodeau J., Tuch B.B., Siddiqui A., Lao K., Surani M.A. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods. 2009; 6(5):377-382. doi 10.1038/nmeth.1315

48. Tieri P., Castiglione F. Modeling macrophage differentiation and cellular dynamics. In: Wolkenhauer O. (Ed.). Systems Medicine. Integrative, Qualitative and Computational Approaches. Academic Press, 2021;511-520. doi 10.1016/B978-0-12-801238-3.11644-7

49. Van de Sande B., Flerin C., Davie K., De Waegeneer M., Hulselmans G., Aibar S., Seurinck R., Saelens W., Cannoodt R., Rouchon Q., Verbeiren T., De Maeyer D., Reumers J., Saeys Y., Aerts S. A scalable SCENIC workflow for single-cell gene regulatory network analysis. Nat. Protoc. 2020;15(7):2247-2276. doi 10.1038/s41596-020-0336-2

50. Wagner A., Regev A., Yosef N. Revealing the vectors of cellular identity with single-cell genomics. Nat. Biotechnol. 2016;34(11):1145-1160. doi 10.1038/nbt.3711

51. Wang P., Qin J., Qin Y., Zhu Y., Wang L.Y., Li M.J., Zhang M.Q., Wang J. ChIP-Array 2: integrating multiple omics data to construct gene regulatory networks. Nucleic Acids Res. 2015;43(W1):264-269. doi 10.1093/nar/gkv398

52. Woodhouse S., Piterman N., Wintersteiger C.M., Göttgens B., Fisher J. SCNS: a graphical tool for reconstructing executable regulatory networks from single-cell genomic data. BMC Syst. Biol. 2018; 2(1):59. doi 10.1186/s12918-018-0581-y

53. Zhang S., Pyne S., Pietrzak S., Halberg S., McCalla S.G., Siahpirani A.F., Sridharan R., Roy S. Inference of cell type-specific gene regulatory networks on cell lineages from single cell omic datasets. Nat. Commun. 2023;14(1):3064. doi 10.1038/s41467-023-38637-9


Review

Views: 316


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)