Diurnal fluctuations in the content of soluble sugars and the expression of the TAI and LIN6 invertase genes and the STP1 sugar transporter gene in the leaves of the tomato (Solanum lycopersicum L.)
https://doi.org/10.18699/vjgb-25-07
Abstract
The content of hexoses (fructose, glucose) essential for the fruit of the tomato (Solanum lycopersicum L.) is regulated by the joint activity of sucrose hydrolysis enzymes (including invertases), invertase inhibitors, and sugar transporters. In addition to fruit taste, soluble sugars are closely related to the stress resistance of the tomato plant. In this work, we determined the diurnal dynamics of the content of soluble sugars (sucrose, fructose and glucose) and the expression of genes for sucrose hydrolysis enzymes (vacuolar invertase TAI, cell wall invertase LIN6) and the hexose transporter (STP1) in the leaves of the tomato variety Korneevsky. It was shown that both the amount of sugars and the level of transcripts of the TAI, LIN6 and STP1 genes depend on the circadian rhythm and correspond to the biological processes occurring in the plant at different periods of the day. The content of sucrose and hexoses changes in a similar way during the day. At the beginning of the light phase, the concentration of sugars is minimal, at the end it has the highest daily values; at the beginning of the dark phase, it shows a residual increase and then decreases towards the end of the phase. In silico analysis of organ-specific expression of TAI, LIN6 and STP1 in S. lycopersicum cv. Micro-Tom showed the presence of mRNA of all three genes in all tissues. The TAI gene was expressed most strongly in ripe fruits, while the level of LIN6 and STP1 transcripts was extremely low. The level of TAI mRNA in the leaves was ~2 times higher than that of LIN6 and ~27 times higher than that of STP1. Analysis using qRT-PCR of the diurnal dynamics of TAI, LIN6 and STP1 expression in the cv. Korneevsky leaves showed that all three genes were expressed at all points analyzed. Fluctuations in their expression levels occur in a similar manner: mRNA levels reach peak values in the middle of the light and dark phases. The results obtained are important for understanding the functions of invertases and sugar transporters in the tomato plant, and can be used in predicting the stress resistance of plants in tomato breeding.
Keywords
About the Authors
M. A. FilyushinRussian Federation
Moscow
A. V. Shchennikova
Russian Federation
Moscow
E. Z. Kochieva
Russian Federation
Moscow
References
1. Beckles D.M., Hong N., Stamova L., Luengwilai K. Biochemical factors contributing to tomato fruit sugar content: a review. Fruits. 2012;67:4964. doi: 10.1051/fruits/2011066
2. Bolouri Moghaddam M.R., Van den Ende W. Sweet immunity in the plant circadian regulatory network. J. Exp. Bot. 2013;64(6):1439-1449. doi: 10.1093/jxb/ert046
3. Efremov G.I., Slugina M.A., Shchennikova A.V., Kochieva E.Z. Differential regulation of phytoene synthase PSY1 during fruit carotenogenesis in cultivated and wild tomato species (Solanum section Lycopersicon). Plants. 2020;9:1169. doi: 10.3390/plants9091169
4. Elliott K.J., Butler W.O., Dickinson C.D., Konno Y., Vedvick T.S., Fitzmaurice L., Mirkov T.E. Isolation and characterization of fruit vacuolar invertase genes from two tomato species and temporal differences in mRNA levels during fruit ripening. Plant Mol. Biol. 1993;21(3):515524. doi: 10.1007/BF00028808
5. Fotopoulos V., Gilbert M.J., Pittman J.K., Marvier A.C., Buchanan A.J., Sauer N., Hall J.L., Williams L.E. The monosaccharide transporter gene, AtSTP4, and the cellwall invertase, Atβfruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum. Plant Physiol. 2003;132(2):821829. doi: 10.1104/pp.103.021428
6. González M.C., Roitsch T., Cejudo F.J. Circadian and developmental regulation of vacuolar invertase expression in petioles of sugar beet plants. Planta. 2005;222(2):386395. doi: 10.1007/s0042500515424
7. Haydon M.J., Bell L.J., Webb A.A. Interactions between plant circadian clocks and solute transport. J. Exp. Bot. 2011;62(7):23332348. doi: 10.1093/jxb/err040
8. Kawaguchi K., TakeiHoshi R., Yoshikawa I., Nishida K., Kobayashi M., Kusano M., Lu Y., Ariizumi T., Ezura H., Otagaki S., Matsumoto S., Shiratake K. Functional disruption of cell wall invertase inhibitor by genome editing increases sugar content of tomato fruit without decrease fruit weight. Sci. Rep. 2021;11(1):21534. doi: 10.1038/s41598021009664
9. Koch K. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 2004;7:235246. doi: 10.1016/j.pbi.2004.03.014
10. Lemoine R., La Camera S., Atanassova R., Dédaldéchamp F., Allario T., Pourtau N., Bonnemain J.L., Laloi M., CoutosThévenot P., Maurousset L., Faucher M., Girousse C., Lemonnier P., Parrilla J., Durand M. Sourcetosink transport of sugar and regulation by environmental factors. Front. Plant Sci. 2013;4:272. doi: 10.3389/fpls.2013.00272
11. Lifschitz E., Eshed Y. Universal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial dayneutral tomato. J. Exp. Bot. 2006;57(13):34053414. doi: 10.1093/jxb/erl106
12. Proels R.K., Roitsch T. Extracellular invertase LIN6 of tomato: a pivotal enzyme for integration of metabolic, hormonal, and stress signals is regulated by a diurnal rhythm. J. Exp. Bot. 2009;60(6):15551567. doi: 10.1093/jxb/erp027
13. Roitsch T., González M.C. Function and regulation of plant invertases: sweet sensations. Trends Plant Sci. 2004;9:606613. doi: 10.1016/j.tplants.2004.10.009
14. Rolland F., BaenaGonzalez E., Sheen J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 2006;57:675709. doi: 10.1146/annurev.arplant.57.032905.105441
15. Slugina M.A., Shchennikova A.V., Kochieva E.Z. TAI vacuolar invertase orthologs: the interspecific variability in tomato plants (Solanum section Lycopersicon). Mol. Genet. Genomics. 2017;292(5): 11231138. doi: 10.1007/s004380171336y
16. Voegele R.T., Wirsel S., Möll U., Lechner M., Mendgen K. Cloning and characterization of a novel invertase from the obligate biotroph Uromyces fabae and analysis of expression patterns of host and pathogen invertases in the course of infection. Mol. Plant Microbe Interact. 2006;19(6):625634. doi: 10.1094/MPMI190625
17. Wang B., Li N., Huang S., Hu J., Wang Q., Tang Y., Yang T., Asmutola P., Wang J., Yu Q. Enhanced soluble sugar content in tomato fruit using CRISPR/Cas9mediated SlINVINH1 and SlVPE5 gene editing. PeerJ. 2021;9:e12478. doi: 10.7717/peerj.12478
18. Wang Y., Shi C., Ge P., Li F., Zhu L., Wang Y., Tao J., Zhang X., Dong H., Gai W., Wang F., Ye Z., Grierson D., Xu W., Zhang Y. A 21bp InDel in the promoter of STP1 selected during tomato improvement accounts for soluble solid content in fruits. Hortic. Res. 2023;10(3):uhad009. doi: 10.1093/hr/uhad009
19. Warnock N.D., Wilson L., CanetPerez J.V., Fleming T., Fleming C.C., Maule A.G., Dalzell J.J. Exogenous RNA interference exposes contrasting roles for sugar exudation in host-finding by plant pathogens. Int. J. Parasitol. 2016;46(8):473477. doi: 10.1016/j.ijpara.2016.02.005
20. Zhang Y.L., Zhang A.H., Jiang J. Gene expression patterns of invertase gene families and modulation of the inhibitor gene in tomato sucrose metabolism. Genet. Mol. Res. 2013;12(3):34123420. doi: 10.4238/2013.January.24.1
21. Zouine M., Maza E., Djari A., Lauvernier M., Frasse P., Smouni A., Pirrello J., Bouzayen M. TomExpress, a unified tomato RNA-Seq platform for visualization of expression data, clustering and correlation networks. Plant J. 2017;92(4):727735. doi: 10.1111/tpj.13711