Morphological variability and genetic structure of Miscanthus sinensis (Poaceae) cultivated in the forest-steppe of Western Siberia
https://doi.org/10.18699/vjgb-25-24
Abstract
Miscanthus sinensis Andersson (Poaceae) grows in monsoon climate. For this reason, when cultured under the conditions of a short growing season of Western Siberia, full-fledged seeds do not have time to form. We have studied a large number of specimens of this species from Primorsky Krai in the collection of the Central Siberian Botanical Garden, SB RAS. Using these samples, it was possible for the first time to select forms that produce high-quality mature seeds in local conditions during a short growing season, possibly due to spontaneous hybridization of early flowering forms. We obtained the first and second (G1 and G2) generations from these seeds and checked for hybrids. The aim of this study is selection, biomorphological characterization of early flowering ornamental forms of M. sinensis and analysis of genetic polymorphism of the selected forms (S1, S2) and the obtained G1 and G2 generations using ISSR markers. Under the conditions of introduction, the selected samples of M. sinensis were characterized by complex resistance, high decorativeness, reached the ontogenetic state of mature generative plants and differed from other samples in the collection by early flowering and the formation of full-fledged seeds. Thus, the forms of M. sinensis we selected are promising for landscape design and breeding. When studying the genetic structure of G1, G2 and two generations of the sample using ISSR markers, three effective stable unique PCR fragments were identified. A study of the genetic variability of the resulting G1 generation showed complete uniformity of genotypes. In the G2 generation, variability was observed, and we found five sets of genotypes, which were also confirmed in the dendrogram. As a result, unique molecular polymorphic fragments were identified. Their length was 300–3000 bp, and the genetic formula for certification of M. sinensis was compiled.
Keywords
About the Authors
O. V. DoroginaRussian Federation
Novosibirsk
I. N. Kuban
Russian Federation
Novosibirsk
G. A. Zueva
Russian Federation
Novosibirsk
E. V. Zhmud
Russian Federation
Novosibirsk
O. Yu. Vasilyeva
Russian Federation
Novosibirsk
References
1. Anisimov A.A., Medvedkov M.S., Skorokhodova A.N. Yield formation features in different Miscanthus species (Miscanthus spp.). In: From Agrarian Sciences to Agriculture. Barnaul: Altai State Agricultural University Publ., 2021;115-116 (in Russian)
2. Berseneva S.A., Ivleva O.E., Maslova A.O. Performance potential of species of Miscantus Аnderss. and genus and prospects of its cultivation in Primorsky Krai. Meždunarodnyj Naučno-issledovatel’skij Žurnal = Int Res J. 2020;7/2:6-10. doi 10.23670/IRJ.2020.97.7.033 (in Russian)
3. Chae W.B., Hong S.J., Gifford J.M., Rayburn A.L., Sacks E.J., Juvik J.A. Plant morphology, genome size, and SSR markers differentiate five distinct taxonomic groups among accessions in the genus Miscanthus. GCB Bioenergy. 2014;6:646-660. doi 10.1111/gcbb.12101
4. Chen Z., He Yu., Iqbal Yu., Shi Y., Huang H., Yi Z. Investigation of genetic relationships within three Miscanthus species using SNP markers identified by SLAF-seq. BMC Genomics. 2022;23(1):43. doi 10.1186/s12864-021-08277-8
5. Chou C.-H., Chiang Y.-C., Chiang T.-Y. Genetic variability and phytogeography of Miscanthus sinensis var. condensatus, an apomictic grass, based on RAPD fingerprints. Can J Bot. 2000;78(10):1262- 1268. doi 10.1139/b00-102
6. Clark L.V., Ryan S., Nishiwaki A., Toma Yo., Zhao H., Peng J., Yoo J.H., Heo K., Yu Ch.Y., Yamada T., Sacks E.J. Genetic structure of Miscanthus sinensis and Miscanthus sacchariflorus in Japan indicates a gradient of bidirectional but asymmetric introgression January. J Exp Bot. 2015;66(14):4213-4225. doi 10.1093/jxb/eru511
7. Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova L.V., Gismatulina Yu.A., Zhmud E.V., Zueva G.A., Kominа O.V., Tsybchenko E.A. Resource potential of some species of the genus Miscanthus Anderss. under conditions of continental climate of West Siberian forest-steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2018;22(5):553-559. doi 10.18699/VJ18.394 (in Russian)
8. Dorogina O.V., Vasilyeva O.Yu., Nuzhdina N.S., Buglova I.V., Zhmud E.V., Zueva G.A., Kominа O.V., Kuban I.S., Gusar A.S., Dudkin R.V. The formation and the study of a collection of the Miscanthus resource species gene pool in the conditions of the West Siberian forest steppe. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2019;23(7):926-932. doi 10.18699/VJ19.568 (in Russian)
9. Dorogina O.V., Nuzhdina N.S., Zueva G.A., Gismatulina Yu.A., Vasilyeva O.Yu. Specific shoot formation in Miscanthus sacchariflorus (Poaceae) under different environmental factors and DNA passportization using ISSR markers. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2022;26(1):22-29. doi 10.18699/VJGB-22-04
10. Doyle J.J., Doyle J.L. A rapid DNA isolation of fresh leaf tissue. Phytochem Bull. 1987;19:11-15 Dyuryagina G.P. On the method of introducing rare and endangered plants. Botanicheskii Zhurnal. = Bot J. 1982;67(5):679-687 (in Russian)
11. Gifford J.M., Chae W.B., Juvik J.A., Swaminathan K., Moose S.P. Mapping the genome of Miscanthus sinensis for QTL associated with biomass productivity. GCB Bioenergy. 2014;7(4):797-810. doi 10.1111/gcbb.12201
12. Grechushkina-Sukhorukova L.A. Dynamics of growth processes and decorative state of Miscanthus sinensis during introduction in the steppe zone. Agrarnaya Nauka = Agrar Sci. 2022;(7-8):178-182. doi 10.32634/0869-8155-2022-361-7-8-178-182 (in Russian)
13. Greef J.M., Deuter M., Jung C., Schondelmaier J. Genetic diversity of European Miscanthus species revealed by AFLP fingerprinting. Genet Resour Crop Evol. 1997;44(2):185-195. doi 10.1023/A:1008693214629
14. Gushchina V.A., Volod’kin A.A., Ostroborodova N.I., Agapkin N.D., Letuchiy A.V. Peculiarities of growth and development of introduction of Miscanthus giganteus in the conditions of forest-step zone in Middle Volga. Agrarnyi Nauchnyi Zhurnal = Agrar Sci J. 2018;1: 10-13. doi 10.28983/asj.v0i1.318 (in Russian)
15. Kapustyanchik S.Yu., Burmakina N.V., Yakimenko V.N. Evaluation of the ecological and agrochemical state of agrocenosis with long-term growing of Miscanthus in Western Siberia. Agrohimia. 2020;9:65- 73. doi 10.31857/S0002188120090082 (in Russian)
16. Kashin A.S., Kritskaya T.A., Schanzer I.A. Genetic polymorphism of Tulipa gesneriana L. evaluated on the basis of the ISSR marking data. Russ J Genet. 2016;52(10):1023-1033. doi 10.1134/S1022795416100045
17. Lee K.Y., Zhang L., Lee G.-J. Botanical and germinating characteristics of Miscanthus species native to Korea. Hort Environ Biotechnol. 2012;53(6):490-496. doi 10.1007/s13580-012-0137-9
18. Methods for Testing Crop and Planting Material Quality. In: Crop Seeds and Planting Material. Moscow: Izdatel’stvo Standartov, 1973;238- 405 (in Russian)
19. Mitros T., Session A.M., James B.T., Wu G.A., Belaffif M.B., Clark L.V. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat Commun. 2020;11:5442. doi 10.1038/s41467-020-18923-6
20. Nei M., Li W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA. 1979; 76(10):5269-5273. doi 10.1073/pnas.76.10.5269
21. Nie G., Zhang X.-Q., Huang L.-K., Xu W.-Z., Wang J.-P., Zhang Y.-W., Ma X., Yan Y.-H., Yan H.-D. Genetic variability and population structure of the potential bioenergy crop Miscanthus sinensis (Poaceae) in southwest China based on SRAP markers. Molecules. 2014; 19(8):12881-12897. doi 10.3390/molecules190812881
22. Nishiwaki A., Mizuguti A., Kuwabara S., Matuura H., Yamaguchi S., Toma Y., Miyashita T., Yamada T., Ishigaki G., Akashi R., Rayburn L.A., Stewart J.R. Discovery of natural Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot. 2011; 98(1):154-159. doi 10.3732/ajb.1000258
23. Novikova A.A., Sheikina O.V., Novikov P.S., Doronina G.U. Estimation of the ISSR-markers application for systematization and genetic certification of genus Rhododendron. Politematicheckij Setevoj Elektronnyj Nauchnyj Zhurnal Kubanskogo Gosudarstvennogo Agrarnogo Universiteta = Polythematic Online Scientific Journal of Kuban State Agrarian University. 2012;82(82):916-926 (in Russian)
24. Orzeszko-Rywka A., Rochalska M. Possibility of seed quality improvement in Miscanthus sinensis (Andersson). J Res Appl Agric Engng. 2016;61(4):83-88
25. Potseluyev O.M., Kapustyanchik S.Yu. Assessment of the feasibility of growing Miscanthus under a cover of cereal crops. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta = Bulletin of Altai State Agricultural University. 2018;10(168):55-60 (in Russian)
26. Swaminathan K., Chae W.B., Mitros T., Kranthi V., Xie L., Barling A., Glowacka K., Hall M., Jezowski S., Ming R., Hudson M., Juvik J.A., Rokhsar D.S. Moose S.P. A framework genetic map for Miscanthus sinensis from RNAseq-based markers shows recent tetraploidy. BMC Genomics. 2012;13:142. doi 10.1186/1471-2164-13-142
27. Tamura K., Uwatoko N., Yamashita H., Fujimori M., Akiyama Y., Shoji A., Sanada Y., Okumura K., Gau M. Discovery of natural interspecific hybrids between Miscanthus sacchariflorus and Miscanthus sinensis in Southern Japan: morphological characterization, genetic structure, and origin. BioEnergy Res. 2016;9(1):315-325. doi 10.1007/s12155-015-9683-1
28. Tang Y.-M., Xiao L., Igbal Y., Liao J.-F., Xiao L.-Q., Yi Z.-L., She C.-W. Molecular cytogenetic characterization and phylogenetic analysis of four Miscantus species (Poaceae). Comp Cytogenet. 2019;13(3): 211-230. doi 10.3897/CompCytogen.v13i3.35346
29. USDA Plant Hardiness Zone Map https://planthardiness.ars.usda.gov/ (accessed: 03.2024) Van de Peer Y.V., De Wachter R.D. Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Bioinformatics. 1997; 13(3):227-230. doi 10.1093/bioinformatics/13.3.227
30. Xu W.Z., Zhang X.Q., Huang L.K., Nie G., Wang J.P. Higher genetic diversity and gene flow in wild populations of Miscanthus sinensis in southwest China. Biochem Syst Ecol. 2013;48:174-181. doi 10.1016/j.bse.2012.11.024
31. Yakimenko V.N., Kapustyanchik S.Yu., Galitsyn G.Yu. Cultivation of Miscanthus in continental regions of Russia. Zemledelie = Agriculture. 2021;2:27-31. doi 10.24411/0044-3913-2021-10206 (in Russian)
32. Zhang G., Ge C., Xu P., Wang S., Cheng S., Han Y., Wang Y., ZhuangY., Hou X., Yu T., Xu X., Yang Y., Yin X., Wang W., Liu W., Zheng C., Sun X., Wang Z., Ming R., Dong S., Ma J., Zhang X., Chen C. The reference genome of Miscanthus floridulus illuminates the evolution of Saccharinae. Nat Plants. 2021;7:608-618. doi 10.1038/s41477-021-00908-y
33. Zueva G.A. Introduction of ornamental cereals and sedges in the Central Siberian Botanical Garden of the Siberian Branch of the Russian Academy of Sciences. Vestnik of Orenburg State Pedagogical University. Electronic Scientific Journal. 2020;3(35):30-41. doi 10.32516/2303-9922.2020.35.3 (in Russian)