Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The opposite association of HRAS and KRAS mutations with clinical variables of bladder cancer

https://doi.org/10.18699/VJ15.081

Abstract

HRAS, KRAS and NRAS gene products belong to the superfamily of small GTPases. These proteins regulate cellular response to extracellular stimuli by means of activation of different signaling pathways. Although the role of RAS gene mutations in the pathogenesis of various human cancers has been established, the clinical significance of these molecular alterations in bladder cancer remains unclear. The aim of this study was to determine the frequency and spectrum of HRAS, KRAS and NRAS mutations, to analyze their relationships with clinicopathological variables and to determine the prognostic value of these alterations in terms of recurrence, progression and mortality, in a prospective cohort of 249 bladder cancer patients. The frequency of RAS mutations detected by the SNaPshot method, was found to be 11.2 %, of which HRAS mutations accounted for 64.3 %, KRAS, for 28.6 % and NRAS, for 7.1 %. We failed to find any correlation between all RAS mutations and pathomorphological characteristics. However, when analyzed separately, HRAS and KRAS mutations were for the first time shown to be associated with the opposite clinical parameters of bladder cancer: HRAS mutations were significantly associated with low-stage low-grade papillary tumors of a small size (р < 0.05), whereas KRAS mutations were associated with non-papillary urothelial carcinomas and the presence of metastasis (р < 0.05). Analysis of the prognostic value of molecular alterations revealed an association of KRAS mutations with decreased cancer-specific survival in both the whole group of patients and the subgroup with non-muscle invasive disease. The data obtained suggest that HRAS and KRAS gene mutations may characterize alternative pathways of bladder cancer pathogenesis: HRAS mutations indicating benign and KRAS mutations, aggressive disease course.

About the Authors

M. P. Smal
Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
Belarus


A. I. Rolevich
N.N. Alexandrov National Cancer Center of Belarus, Lesnoy, Minsk District, Belarus
Belarus


T. N. Nabebina
N.N. Alexandrov National Cancer Center of Belarus, Lesnoy, Minsk District, Belarus
Belarus


S. A. Krasny
N.N. Alexandrov National Cancer Center of Belarus, Lesnoy, Minsk District, Belarus
Belarus


R. I. Goncharova
Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Belarus
Belarus


References

1. Океанов А.Е., Моисеев П.И., Левин Л.Ф. Статистика онкологических заболеваний в Республике Беларусь (2003–2012). Минск: РНПЦ ОМР им. Н.Н. Александрова, 2013.

2. Смаль М.П., Кужир Т.Д., Ролевич А.И., Поляков С.Л., Набебина Т.И., Красный С.А., Гончарова Р.И. Мутационный статус гена FGFR3 в проспективной когорте пациентов, страдающих раком мочевого пузыря. Докл. НАН Беларуси. 2013;57(1):96-101.

3. Babjuk M., Burger M., Zigeuner R., Shariat S.F., van Rhijn B.W., Comperat E., Sylvester R.J., Kaasinen E., Bohle A., Palou Redorta J., Roupret M. EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur. Urol. 2013;64(4):639-653. DOI: 10.1016/j.eururo.2013.06.003

4. Beukers W., Hercegovac A., Zwarthoff E.C HRAS mutations in bladder cancer at an early age and the possible association with the Costello Syndrome Eur. J. Hum. Genet. 2014;22(6):837-839. DOI : 10.1038/ejhg.2013.251

5. Boulalas I., Zaravinos A., Karyotis I., Delakas D., Spandidos D.A. Activation of RAS family genes in urothelial carcinoma J. Urol. 2009; 181(5):2312-2319. DOI: 10.1016/j.juro.2009.01.011

6. Castellano E., Santos E. Functional specificity of Ras isoforms: so similar but so different Genes Cancer. 2011;2(3):216-231. DOI: 10.1177/1947601911408081

7. Czerniak B., Cohen G.L., Etkind P., Deitch D., Simmons H., Herz F., Koss L.G. Concurrent mutations of coding and regulatory sequences of the Ha-ras gene in urinary bladder carcinomas Hum. Pathol. 1992;23(11):1199-1204. DOI: 10.1016/0046-8177(92)90285-B

8. Fitzgerald J.M., Ramchurren N., Rieger K., Levesque P., Silverman M., Libertinoo J.A., Summerhayes .C. Identification of H-ras mutations in urine sediments complements cytology in the detection of bladder tumors. J. Natl. Cancer Inst. 1995;87(2):129-133. DOI: 10.1093/jnci/87.2.129

9. Forbes S.A., Beare D., Gunasekaran P., Leung K., Bindal N., Boutselakis H., Ding M., Bamford S., Cole C., Ward S., Kok C.Y., Jia M., De T., Teague J.W., Stratton M.R., McDermott U., Campbell P.J. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer Nucl Acids Res 2015;43:D805-811.DOI: nar/gku1075

10. Hansel D.E., McKenney J.K., Stephenson A.J., Chang S.S. www.springer.com/medicine/pathology/book/978-1-4614-5319-2

11. The Uri­nary Tract. A Comprehensive Guide to Patient Diagnosis andManagement. N.Y.: Springer, 2012.

12. Jebar A.H., Hurst C.D., Tomlinson D.C., Johnston C., Taylor C.F., Knowles M.A. FGFR3 and Ras gene mutations are mutually exclusive genetic events in urothelial cell carcinoma ncogene.

13. ;24(33):5218-5225. DOI: 10.1038/sj.onc.1208705

14. Karimianpour N., Mousavi-Shafaei P., Ziaee A.A., Akbari M.T., Pourmand G., Abedi A., Ahmadi A., Afshin Alavi H. Mutations of RAS gene family in specimens of bladder cancer Urol. J. 2008;5(4 237-242.

15. Knowles M.A. Molecular pathogenesis of bladder cancer Int. J. Clin. Oncol. 2008;13(4):287-297. DOI : 10.1007s10147-008-0212-0

16. Kompier L.C., Lurkin I., van der Aa M.N., van Rhijn B.W., van der Kwast T.H., Zwarthoff E.C. FGFR3, HRAS, KRAS, NRAS and PIK3CA mutations in bladder cancer and their potential as biomarkers for surveillance and therapy PLoS ne. 2010;5(11):e13821. DOI: 10.1371/journal.pone.0013821

17. Malumbres M., Barbacid M. RAS oncogenes: the first 30 years Nat. Rev. Cancer. 2003;3(6):459-465. DOI: 10.1038/nrc1097

18. Nanda M.S., Sameer A.S., Syeed N., Shah Z.A., Murtaza I., Siddiqi M.A., Ali A. Genetic aberrations of the K-ras proto-oncogene in bladder cancer in Kashmiri population Urol. J. 2010;7(3):168-173.

19. Ouerhani S., Elgaaied A.B. The mutational spectrum of HRAS, KRAS, NRAS and FGFR3 genes in bladder cancer Cancer Biomark. 2011– 2012;10(6):259-266. DOI:

20. Ouerhani S., Bougatef K., Soltani I., Elgaaied A.B., Abbes S., Menif S. The prevalence and prognostic significance of KRAS mutation in bladder cancer, chronic myeloid leukemia and colorectal cancer Mol. Biol. Rep. 2013;40(6):4109-4114. DOI: 10.1007/s11033-013-2512-8

21. Pandith A.A., Shah Z., Rasool R., Afroze D., Yousuf A., Parveen N., Wani S., Siddiqi M. Activated H-ras gene mutations in transitional cell carcinoma of urinary bladder in a Kashmiri population Tumori. 2010;96(6):993-998.

22. Pollard C., Smith S.C., Theodorescu D. Molecular genesis of non-muscle-invasive urothelial carcinoma (NMIUC). Expert. Rev. Mol. Med. 2010;12:e10. DOI : 10.1017/S1462399410001407

23. Radkay L.A., Chiosea S.I., Seethala R.R., Hodak S.P., LeBeau S.O., Yip L., McCoy K.L., Carty S.E., Schoedel K.E., Nikiforova M.N., Nikiforov Y.E., Ohori N.P. Thyroid nodules with KRAS mutations are different from nodules with NRAS and HRAS mutations with regard to cytopathologic and histopathologic outcome characteristics Cancer Cytopathol. 2014;122(12):873-882. DOI : 10.1002/cncy.21474

24. Sjodahl G., Lauss M., Gudjonsson S., Liedberg F., Hallden C., Chebil G., Mansson W., Hoglund M., Lindgren D. A systematic study of gene mutations in urothelial carcinoma; inactivating mutations in TSC2 and PIK3R1 PLoS ne. 2011;6(4):e18583. DOI: pone.0018583

25. Smal M.P., Rolevich A.I., Polyakov S.L., Krasny S.A., Goncharova R.I. FGFR3 and TP53 mutations in prospective cohort of Belarusian bladder cancer patients. Exp. ncol. 2014;36(4):246-251.

26. Spruck C.H., Ohneseit P.F., Gonzalez-Zulueta M., Esrig ., Miyao N., Tsai Y.C., Lerner S.P., Schmutte C., Yang A.S., Cote R., Dubeau L., Nichols P.W., Hermann G.G., Steven K., Horn T., Skinner D.G., Jones P.A. Two molecular pathways to transitional cell carcinoma of the bladder Cancer Res. 1994;54(3):784-788

27. Stenzl A Witjes J.A., Comperat E., Cowan N.C., De Santis M., Kuczyk M., Lebret T., Ribal M.J., Sherif A. Guidelines on bladder cancer: muscle-invasive and metastatic. Arnhem: European Association of Urology (EAU), 2012.

28. Theodorescu D., Cornil I., Fernandez B.J., Kerbel R.S. Overexpression of normal and mutated forms of HRAS induces orthotopic bladder invasion in a human transitional cell carcinoma Proc. Natl Acad. Sci. USA. 1990;87(22):9047-van Rhijn B.W., van der Kwast T.H., Vis A.N., Kirkels W.J., Boeve E.R., Jobsis A.C., Zwarthoff E.C. FGFR3 and P53 characterize alternative genetic pathways in the pathogenesis of urothelial cell carcinoma. Cancer Res. 2004;64(6):1911-1914. DOI: 10.1158/0008-5472.CAN-03-2421

29. Wang A.X., Chang J.W., Li C.Y., Liu K., Lin Y.L. H-ras mutation detection in bladder cancer by COLD-PCR analysis and direct sequencing Urol. Int. 2012;88(3):350-357. DOI:

30. Yan Z., Chen M., Perucho M., Friedman E. Oncogenic Ki-ras but not oncogenic Ha-ras blocks integrin beta1-chain maturation in colon epithelial cells J. Biol. Chem. 1997;272(49):30928-30936. DOI : 10.1074/jbc.272.49.30928

31. Zhang Z.T., Pak J., Huang H.Y., Shapiro E., Sun T.T., Pellicer A., Wu X.R. Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene. 2001;20(16):1973-1980.


Review

Views: 766


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)