Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Метод IIIVmrMLM обнаруживает новые генетические варианты, связанные с устойчивостью к фузариозному увяданию у льна

https://doi.org/10.18699/vjgb-25-41

Аннотация

Лен (Linum usitatissimum) – важная сельскохозяйственная культура, выращиваемая для получения волокна и масла. Лен используют для производства красок, линолеума, в пищевой промышленности, для производства одежды и композитных материалов. Значительный экономический ущерб при выращивании льна наносит фузариозное увядание, вызываемое грибом Fusarium oxysporum f. sp. lini. Споры гриба могут долгое время сохраняться в почве, поэтому получение устойчивых к заражению сортов имеет большое значение.

Здесь мы использовали данные об устойчивости 297 образцов льна из коллекции Федерального научного центра лубяных культур в Торжке (Россия) к заражению сильнo вирулентным изолятом гриба MI39 в 2019–2021 гг. Устойчивость генотипа к заражению оценивали путем вычисления индекса DSI – нормализованной пропорции генотипов с одинаковыми симптомами болезни. Для поиска районов генома льна, ассоциированных с устойчивостью, использовали программу IIIVmrMLM в режиме Single_env. Модель IIIVmrMLM была разработана для устранения методологических недостатков в выявлении всех типов взаимодействий между аллелями, генами и средой и для несмещенной оценки их генетических эффектов. Поскольку это мультилокусная MLM-модель, она оценивает эффекты всех генов, а также эффекты всех взаимодействий одновременно. Всего было найдено 111 QTN, из которых 34 были локализованы в последовательности известного гена или расположены во фланкирующих районах на расстоянии, не превышающем 1 т. п. н. Гены, в которые попадали обнаруженные варианты, были связаны с устойчивостью к абиотическим и биотическим стрессам, с ростом и развитием корня, побега и цветка. Десять из найденных QTN картировались в областях ранее идентифицированных QTL, контролирующих синтез пальмитиновой, олеиновой и других жирных кислот. QTN Chr1_1706865/ Chr1_1706872 и QTN Chr8_22542741 маркируют районы, идентифицированные нами ранее при поиске ассоциаций программой GAPIT. Для всех найденных QTN был подтвержден аллельный эффект: произведен тест Манна–Уитни, который подтвердил значимые различия между значением DSI у носителей референсного и альтернативного аллеля. Увеличение в генотипе числа аллелей с негативным эффектом приводит к статистически значимому уменьшению величины DSI для всех трех лет тестирования. Группы сортов с большим количеством аллелей, уменьшающих индекс DSI, имели наилучшую устойчивость. Всего из коллекции было выбрано пять сортов, для которых число аллелей, уменьшающих величину DSI, не превышало число аллелей с обратным эффектом по всем трем годам. Эти сорта могут быть использованы в дальнейшем в селекционных программах

Об авторах

М. А. Дук
Санкт-Петербургский политехнический университет Петра Великого; Физико-технический институт им. А.Ф. Иоффе Российской академии наук
Россия

Санкт-Петербург



А. А. Канапин
Санкт-Петербургский политехнический университет Петра Великого
Россия

Санкт-Петербург



А. А. Самсонова
Санкт-Петербургский политехнический университет Петра Великого
Россия

Санкт-Петербург



М. П. Банкин
Санкт-Петербургский политехнический университет Петра Великого
Россия

Санкт-Петербург



М. Г. Самсонова
Санкт-Петербургский политехнический университет Петра Великого
Россия

Санкт-Петербург



Список литературы

1. Andersen P., Kragelund B.B., Olsen A.N., Larsen F.H., Chua N.H., Poulsen F.M., Skriver K. Structure and biochemical function of a prototypical Arabidopsis U­box domain. J Biol Chem. 2004; 279(38):40053­40061. doi 10.1074/jbc.M405057200

2. Aoyama T., Dong C.H., Wu Y., Carabelli M., Sessa G., Ruberti I., Morelli G., Chua N.H. Ectopic expression of the Arabidopsis transcriptional activator Athb­1 alters leaf cell fate in tobacco. Plant Cell. 1995;7(11):1773­1785. doi 10.1105/tpc.7.11.1773

3. Boba A., Kostyn K., Kozak B., Zalewski I., Szopa J., Kulma A. Transcriptomic profiling of susceptible and resistant flax seedlings after Fusarium oxysporum lini infection. PLoS One. 2021;16:e0246052. doi 10.1371/journal.pone.0246052

4. Bradbury P.J., Zhang Z., Kroon D.E., Casstevens T.M., Ramdoss Y., Buckler E.S. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633­2635. doi 10.1093/bioinformatics/btm308

5. Carol R.J., Takeda S., Linstead P., Durrant M.C., Kakesova H., Derbyshire P., Drea S., Zarsky V., Dolan L. A RhoGDP dissociation inhibitor spatially regulates growth in root hair cells. Nature. 2005; 438(7070):1013­1016. doi 10.1038/nature04198

6. Cloutier S., Edwards T., Zheng C., Booker H.M., Islam T., Nabetani K., Kutcher H.R., Molina O., You F.M. Fine­mapping of a major locus for Fusarium wilt resistance in flax (Linum usitatissimum L.). Theor Appl Genet. 2024;137(1):27. doi 10.1007/s00122­023­04528­2

7. Dean R., Van Kan J.A., Pretorius Z.A., Hammond­Kosack K.E., Di Pietro A., Spanu P.D., Rudd J.J., Dickman M., Kahmann R., Ellis J., Foster G.D. The Top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414­430. doi 10.1111/j.1364­3703.2011.00783.x

8. Delessert C., Kazan K., Wilson I.W., Van Der Straeten D., Manners J., Dennis E.S., Dolferus R. The transcription factor ATAF2 represses the expression of pathogenesis­related genes in Arabidopsis. Plant J. 2005;43(5):745­757. doi 10.1111/j.1365­313X.2005.02488.x

9. Depuydt S., Rodriguez­Villalon A., Santuari L., Wyser­Rmili C., Ragni L., Hardtke C.S. Suppression of Arabidopsis protophloem differentiation and root meristem growth by CLE45 requires the receptor­like kinase BAM3. Proc Natl Acad Sci USA. 2013;110(17): 7074­7079. doi 10.1073/pnas.1222314110

10. Dmitriev A.A., Krasnov G.S., Rozhmina T.A., Novakovskiy R.O., Snezh kina A.V., Fedorova M.S., Yurkevich O.Y., Muravenko O.V., Bolsheva N.L., Kudryavtseva A.V., Melnikova N.V. Differential gene expression in response to Fusarium oxysporum infection in resistant and susceptible genotypes of flax (Linum usitatissimum L.) BMC Plant Biol. 2017;17(Suppl.2):253. doi 10.1186/s12870­017­1192­2

11. Duan H.C., Wei L.H., Zhang C., Wang Y., Chen L., Lu Z., Chen P.R., He C., Jia G. ALKBH10B is an RNA N6­methyladenosine demethylase affecting Arabidopsis floral transition. Plant Cell. 2017;29(12): 2995­3011. doi 10.1105/tpc.16.00912

12. Galindo­González L., Deyholos M.K. RNA­seq transcriptome response of flax (Linum usitatissimum L.) to the pathogenic fungus Fusarium oxysporum f. sp. lini. Front Plant Sci. 2016;7:1766. doi 10.3389/fpls.2016.01766

13. Garcia M.E., Lynch T., Peeters J., Snowden C., Finkelstein R. A small plant­specific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings. Plant Mol Biol. 2008;67(6):643­658. doi 10.1007/s11103­008­9344­2

14. Gish L.A., Clark S.E. The RLK/Pelle family of kinases. Plant J. 2011; 66(1):117­127. doi 10.1111/j.1365­313X.2011.04518.x

15. Goudenhooft C., Bourmaud A., Baley C. Flax (Linum usitatissimum L.) fibers for composite reinforcement: exploring the link between plant growth, cell walls development, and fiber properties. Front Plant Sci. 2019;10:411. doi 10.3389/fpls.2019.00411

16. Guidelines for the Phytopathological Assessment of the Resistance of Fiber Flax to Diseases. Moscow, 2000 (in Russian)

17. He M., Ding N.Z. Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci. 2020;11:562785. doi 10.3389/fpls.2020.562785

18. Houston B.R., Knowles P.F. Fifty­years survival of flax fusarium wilt in the absence of flax culture. Plant Dis Rep. 1949;33:38­39

19. Jia M., Chen X., Shi X., Fang Y., Gu Y. Nuclear transport receptor KA120 regulates molecular condensation of MAC3 to coordinate plant immune activation. Cell Host Microbe. 2023;31(10):16851699.e7. doi 10.1016/j.chom.2023.08.015

20. Kachroo A., Fu D.Q., Havens W., Navarre D., Kachroo P., Gha brial S.A. An oleic acid­mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol Plant Microbe Interact. 2008;21(5):564­575. doi 10.1094/MPMI­21­5­0564

21. Kanapin A., Bankin M., Rozhmina T., Samsonova A., Samsonova M. Genomic regions associated with Fusarium wilt resistance in flax. Int J Mol Sci. 2021;22(22):12383. doi 10.3390/ijms222212383

22. Kim J.H., Jung H., Song K., Lee H.N., Chung T. The phosphatidylinositol 3­phosphate effector FYVE3 regulates FYVE2­dependent autophagy in Arabidopsis thaliana. Front Plant Sci. 2023;14:1160162. doi 10.3389/fpls.2023.1160162

23. Kojima S., Bohner A., Gassert B., Yuan L., von Wirén N. AtDUR3 represents the major transporter for high­affinity urea transport across the plasma membrane of nitrogen­deficient Arabidopsis roots. Plant J. 2007;52(1):30­40. doi 10.1111/j.1365­313X.2007.03223.x

24. Krizek B.A., Meyerowitz E.M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development. 1996;122(1):11­22. doi 10.1242/dev.122.1.11

25. Lease K., Ingham E., Walker J.C. Challenges in understanding RLK function. Curr Opin Plant Biol. 1998;1(5):388­392. doi 10.1016/s1369­5266(98)80261­6

26. Li H., Durbin R. Fast and accurate short read alignment with BurrowsWheeler transform. Bioinformatics. 2009;25(14):1754­1760. doi 10.1093/bioinformatics/btp324

27. Li M., Zhang Y.W., Xiang Y., Liu M.H., Zhang Y.M. IIIVmrMLM: the R and C++ tools associated with 3VmrMLM, a comprehensive GWAS method for dissecting quantitative traits. Mol Plant. 2022; 15(8):1251­1253. doi 10.1016/j.molp.2022.06.002

28. Liu L.H., Ludewig U., Frommer W.B., von Wirén N. AtDUR3 encodes a new type of high­affinity urea/H+ symporter in Arabidopsis. Plant Cell. 2003;15(3):790­800. doi 10.1105/tpc.007120

29. Lutziger I., Oliver D.J. Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett. 2000;484(1):12­16. doi 10.1016/s0014­5793(00)02116­5

30. Ma K., Kou J., Khashi U., Rahman M., Du W., Liang X., Wu F., Li W., Pan K. Palmitic acid mediated change of rhizosphere and alleviation of Fusarium wilt disease in watermelon. Saudi J Biol Sci. 2021; 28(6):3616­3623. doi 10.1016/j.sjbs.2021.03.040

31. Motohashi R., Yamazaki T., Myouga F., Ito T., Ito K., Satou M., Kobayashi M., Nagata N., Yoshida S., Nagashima A., Tanaka K., Takahashi S., Shinozaki K. Chloroplast ribosome release factor 1 (AtcpRF1) is essential for chloroplast development. Plant Mol Biol. 2007;64(5):481­497. doi 10.1007/s11103­007­9166­7

32. Nair R.B., Bastress K.L., Ruegger M.O., Denault J.W., Chapple C. The Arabidopsis thaliana REDUCED EPIDERMAL FLUORESCENCE1 gene encodes an aldehyde dehydrogenase involved in ferulic acid and sinapic acid biosynthesis. Plant Cell. 2004;16(2):544­554. doi 10.1105/tpc.017509

33. Ondrej M. Evaluation of flax genepool according to resistance to Fusarium wilt of flax and to mildew. Plant Genet. Resour. 1993;92:54­58

34. Purcell S., Neale B., Todd­Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J., Sham P.C. PLINK: a tool set for whole­genome association and populationbased linkage analyses. Am J Hum Genet. 2007;81(3):559­575. doi 10.1086/519795

35. Rashid K.Y., Kenaschuk E.O. Effect of trifluralin on fusarium wilt in flax. Can J Plant Sci. 1993;3:893­901. doi 10.4141/cjps93­117

36. Rodriguez­Villalon A., Gujas B., Kang Y.H., Breda A.S., Cattaneo P., Depuydt S., Hardtke C.S. Molecular genetic framework for protophloem formation. Proc Natl Acad Sci USA. 2014;111(31):11551­ 11556. doi 10.1073/pnas.1407337111

37. Rozhmina T.A. Identification of effective genes of resistance to Fusarial wilt at variety of fibre­flax. Biology in Agriculture. 2017;4: 10­12 (in Russian)

38. Rozhmina T.A., Loshakova N.I. New sources of effective resistance genes to Fusarium wilt in flax (Linum usitatissimum L.) depending on temperature. Sel’skokhozyaistvennaya Biologiya = Agric Biol. 2016;51(3):310­317. doi 10.15389/agrobiology.2016.3.310eng

39. Rozhmina T., Samsonova A., Kanapin A., Samsonova M. An account of Fusarium wilt resistance in flax Linum usitatissimum: the disease severity data. Data Brief. 2022;41:107869. doi 10.1016/j.dib.2022.107869

40. Strawn M.A., Marr S.K., Inoue K., Inada N., Zubieta C., Wildermuth M.C. Arabidopsis isochorismate synthase functional in pathogen­induced salicylate biosynthesis exhibits properties consistent with a role in diverse stress responses. J Biol Chem. 2007;282(8): 5919­5933. doi 10.1074/jbc.M605193200

41. Tello D., Gil J., Loaiza C.D., Riascos J.J., Cardozo N., Duitama J. NGSEP3: accurate variant calling across species and sequencing protocols. Bioinformatics. 2019;35(22):4716­4723. doi 10.1093/bioinformatics/btz275

42. Wang X., Culver J.N. DNA binding specificity of ATAF2, a NAC domain transcription factor targeted for degradation by Tobacco mosaic virus. BMC Plant Biol. 2012;12:157. doi 10.1186/1471­2229­12­157

43. Wang X., Goregaoker S.P., Culver J.N. Interaction of the Tobacco mosaic virus replicase protein with a NAC domain transcription factor is associated with the suppression of systemic host defenses. J Virol. 2009;83(19):9720­9730. doi 10.1128/JVI.00941­09

44. Wang Z., Hobson N., Galindo L., Zhu S., Shi D., McDill J., Yang L., Hawkins S., Neutelings G., Datla R., Lambert G., Galbraith D.W., Grassa C.J., Geraldes A., Cronk Q.C., Cullis C., Dash P.K., Kumar P.A., Cloutier S., Sharpe A.G., Wong G.K., Wang J., Deyholos M.K. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72(3): 461­473. doi 10.1111/j.1365­313X.2012.05093.x

45. Wildermuth M.C., Dewdney J., Wu G., Ausubel F.M. Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature. 2001;414(6863):562­565. doi 10.1038/35107108

46. Yan J., Su P., Meng X., Liu P. Phylogeny of the plant receptor­like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics. 2023;24(1):224. doi 10.1186/s12864­023­09303­7

47. You F., Cloutier S. Mapping quantitative trait loci onto chromosomescale pseudomolecules in flax. Methods Protoc. 2020;3(2):28. doi 10.3390/mps3020028

48. Zhang C., Dong S.­S., Xu J.­Y., He W.­M., Yang T.­L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics. 2019;35(10): 1786­1788. doi 10.1093/bioinformatics/bty875

49. Zhang Y.M., Jia Z., Dunwell J.M. Editorial: the applications of new multi­locus GWAS methodologies in the genetic dissection of complex traits. Front Plant Sci. 2019;10:100. doi 10.3389/fpls.2019.00100

50. Zhang Y.­W., Tamba C.L., Wen Y.­J., Li P., Ren W.­L., Ni Y.­L., Gao J., Zhang Y.­M. mrMLM v4.0.2: an R platform for multi­locus genome­wide association studies. Genomics Proteomics Bioinformatics. 2020;18(4):481­487. doi 10.1016/j.gpb.2020.06.006


Рецензия

Просмотров: 158


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)