Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Karyological differentiation among bread wheat cultivars (Triticum aestivum L.) with distinct breeding statuses and growth habits

https://doi.org/10.18699/vjgb-25-83

Abstract

The assessment of intraspecific variability of wheat has been relevant for years. Although most modern wheat cultivars are considered to be pure lines, the heterogeneity of varietal populations is one of the mechanisms for maintaining population homeostasis. It is possible that the high evolutionary stability of constitutive heterochromatin and its stable distribution within chromosomes will allow us to use karyological analysis not only for studying the genesis and taxonomy of Triticum L., but also for studying the intraspecific diversity of wheat. In this regard, a classification of 87 Russian cultivars of common wheat differing in breeding status (landraces and modern cultivars) and growth habit (spring and winter) was carried out using two alternative approaches for assessing karyograms. The first approach uses the qualitative assessment of karyograms based on the distribution of C-bands on chromosomes. We also proposed that quantification of karyograms based on the size of C-bands would make the classification of cultivars more adequate. The variability, informative value and resolution of diagnostic features, trends in grouping cultivars, and their associations with the breeding status and growth habit were studied. A high potential of karyotyping with C-banding in discriminating modern cultivars by growth habit, as well as in separating winter cultivars from landraces has been revealed. In terms of the tested karyological features, the homogeneity of modern cultivars was higher than that of local cultivars, and the homogeneity of winter wheat was higher than that of spring wheat. The obtained classification reflects the preservation of high similarity in the karyograms of modern spring cultivars and landraces, as well as the low distinguishability between the karyograms of landraces differing in growth habit. A comparative analysis of the classifications of 20 cultivars using C-banding and SNP genotyping (3,126 polymorphic markers) suggests that studying the karyotypic variability allows us to infer a more accurate differentiation of wheat varietal populations based on the breeding status than using SNP markers that detect genetic variability, especially when the number of diagnostic features is limited.

About the Authors

A. F. Muterko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk 



E. D. Badaeva
Vavilov Institute of General Genetics of the Russian Academy of Sciences
Russian Federation

 Moscow 



E. V. Zuev
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

 St. Petersburg 



E. A. Salina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk 



References

1. Adonina I.G., Leonova I.N., Badaeva E.D., Salina E.A. Genotyping of hexaploid wheat varieties from different Russian regions. Russ J Genet Appl Res. 2017;7(1):6-13. doi 10.1134/S2079059717010014

2. Afonnikova S.D., Kiseleva A.A., Fedyaeva A.V., Komyshev E.G., Koval V.S., Afonnikov D.A., Salina E.A. Identification of novel loci precisely modulating pre-harvest sprouting resistance and red color components of the seed coat in T. aestivum L. Plants. 2024;13:1309. doi 10.3390/plants13101309

3. Badaeva E.D., Shkutina F.M., Bogdevich I.N., Badaev N.S. Comparative study of Triticum aestivum and T. timopheevi genomes using C-banding technique. Plant Syst Evol. 1986;154:183-194. doi 10.1007/BF00990122

4. Badaeva E.D., Sozinova L.F., Badaev N.S., Muravenko O.V., Zele­ nin A.V. “Chromosomal passport” of Triticum aestivum L. em Thell. cv. Chinese Spring and standardization of chromosomal analysis of cereals. Cereal Res Commun. 1990;18(4):273-281

5. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol. 1994;192:117-145. doi 10.1007/BF00985912

6. Badaeva E.D., Dedkova O.S., Gay G., Pukhalskyi V.A., Zelenin A.V., Bernard S., Bernard M. Chromosomal rearrangements in wheat: their types and distribution. Genome. 2007;50(10):907-926. doi 10.1139/g07-072

7. Badaeva E.D., Dedkova O.S., Pukhalskyi V.A., Zelenin A.V. Chromosomal changes over the course of polyploid wheat evolution and domestication. In: Ogihara Y., Takumi S., Handa H. (Eds) Advances in Wheat Genetics: From Genome to Field. Tokyo: Springer, 2015a; 83-89. doi 10.1007/978-4-431-55675-6_9

8. Badaeva E.D., Keilwagen J., Knüpffer H., Waßermann L., Dedkova O.S., Mitrofanova O.P., Kovaleva O.N., Liapunova O.A., Pukhalskiy V.A., Özkan H., Graner A., Willcox G., Kilian B. Chromosomal passports provide new insights into diffusion of emmer wheat. PLoS One. 2015b;10(5):e0128556. doi 10.1371/journal.pone.0128556

9. Badaeva E.D., Konovalov F.A., Knüpffer H., Fricano A., Ruban A.S., Kehel Z., Zoshchuk S.A., … Filatenko A., Bogaard A., Jones G., Özkan H., Kilian B. Genetic diversity, distribution and domestication history of the neglected GGAtAt genepool of wheat. Theor Appl Genet. 2022;135(3):755-776. doi 10.1007/s00122-021-03912-0

10. Becker R.A., Chambers J.M., Wilks A.R. The New S Language: A Programming Environment for Data Analysis and Graphics. Berlin: Springer, 1988

11. Blary A., Jenczewski E. Manipulation of crossover frequency and distribution for plant breeding. Theor Appl Genet. 2019;132(3):575- 592. doi 10.1007/s00122-018-3240-1

12. Boehm J., Jr., Cai X. Enrichment and diversification of the wheat genome via alien introgression. Plants. 2024;13(3):339. doi 10.3390/plants13030339

13. Dedkova O.S., Badaeva E.D., Mitrofanova O.P., Zelenin A.V., Pukhalskiy V.A. Analysis of intraspecific divergence of hexaploid wheat Triticum spelta L. by C-banding of chromosomes. Russ J Genet. 2004;40:1111-1126. doi 10.1023/B:RUGE.0000044755.18085.7e

14. Dedkova O., Badaeva E., Mitrofanova O., Bilinskaya E., Pukhalskiy V. Analysis of intraspecific diversity of cultivated emmer Triticum dicoccum (Schrank.) Schuebl using C-banding technique. Russ J Genet. 2007;43:1271-1285. doi 10.1134/S1022795407110105

15. Dedkova O., Badaeva E., Amosova A., Martynov S., Ruanet V., Mitrofanova O., Pukhal’skiy V. Diversity and the origin of the European population of Triticum dicoccum (Schrank) Schuebl. As revealed by chromosome analysis. Russ J Genet. 2009;45:1082-1091. doi 10.1134/S1022795409090099

16. Delaney D.E., Nasuda S., Endo T.R., Gill B.S., Hulbert S.H. Cytologically based physical maps of the group-2 chromosomes of wheat. Theor Appl Genet. 1995;91(4):568-573. doi 10.1007/BF00223281

17. Endo T.R., Gill B.S. The deletion stocks of common wheat. J Hered. 1996;87(4):295-307. doi 10.1093/oxfordjournals.jhered.a023003

18. Fadeeva T.S., Narbut S.I. Genetic characteristics of varieties and cha­ racteristics of pure-line varieties. Vestnik Leningradskogo Gosudarstvennogo Universiteta = Herald of the Leningrad State University. 1969;21(4):123-131 (in Russian)

19. Fan C., Hao M., Jia Z., Neri C., Chen X., Chen W., Liu D., Lukaszewski A.J. Some characteristics of crossing over in induced recombination between chromosomes of wheat and rye. Plant J. 2021; 105(6):1665-1676. doi 10.1111/tpj.15140

20. Feldman M. Origin of cultivated wheat. In: Bonjean A.P., Angus W.J. (Eds) The World Wheat Book: A History of Wheat Breeding. Technique & Doc, 2001;3-56

21. Feldman M., Levy A.A. Wheat Evolution and Domestication. Springer, 2023. doi 10.1007/978-3-031-30175-9

22. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783-791. doi 10.1111/j.1558-5646. 1985.tb00420.x

23. Friebe B., Gill B.S. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica. 1994;78:1-5. doi 10.1007/BF00021392

24. Friebe B., Gill B.S. Chromosome banding and genome analysis in di­ ploid and cultivated polyploid wheats. In: Jauhar P.P. (Ed.) Methods in Genome Analysis in Plants. CRC Press, 1996;39-60

25. Galili T. dendextend: an R package for visualizing, adjusting, and comparing trees of hierarchical clustering. Bioinformatics. 2015;31(22): 3718-3720. doi 10.1093/bioinformatics/btv428

26. Gill B.S., Friebe B., Endo T.R. Standard karyotype and nomenclature system for description of chromosome bands and structural aberrations in wheat (Triticum aestivum). Genome. 1991;34(5):830-839. doi 10.1139/g91-128

27. Goncharov N.P. Comparative Genetics of Wheats and their Related Species. Novosibirsk: Acad. Publ. House “Geo”, 2012 (in Russian)

28. Guo J., Gao D., Gong W., Li H., Li J., Li G., Song J., Liu J., Yang Z., Liu C. Genetic diversity in common wheat lines revealed by fluorescence in situ hybridization. Plant Syst Evol. 2019;305:247-254. doi 10.1007/s00606-019-1567-y

29. Haudry A., Cenci A., Ravel C., Bataillon T., Brunel D., Poncet C., Hochu I., Poirier S., Santoni S., Glémin S., David J. Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol. 2007;24(7):1506-1517. doi 10.1093/molbev/msm077

30. Hu Z., Luo J., Wan L., Luo J., Li Y., Fu S., Liu D., Hao M., Tang Z. Chromosomes polymorphisms of Sichuan wheat cultivars displayed by ND-FISH landmarks. Cereal Res Commun. 2022;50:253-262. doi 10.1007/s42976-021-00173-x

31. Huang X., Zhu M., Zhuang L., Zhang S., Wang J., Chen X., Wang D., … Chu C., Du P., Qi Z., Wang H., Chen P. Structural chromosome rearrangements and polymorphisms identified in Chinese wheat cultivars by high-resolution multiplex oligonucleotide FISH. Theor Appl Genet. 2018;131(9):1967-1986. doi 10.1007/s00122-018-3126-2

32. Husson F., Le S., Pages J. Exploratory Multivariate Analysis by Example Using R. Chapman and Hall, 2010 Iordansky A.B., Zurabishvili T.B., Badaev N.S. Linear differentiation of cereal chromosomes. I. Common wheat and its supposed ancestors. Theor Appl Genet. 1978a;51(4):145-152. doi 10.1007/BF00 273138

33. Iordansky A.B., Zurabishvili T.G., Badaev N.S. Linear differentation of cereal chromosomes: III. Rye, triticale and ʻAuroraʼ variety. Theor Appl Genet. 1978b;51(6):281-288. doi 10.1007/BF00274816

34. Jiang J., Friebe B., Gill B.S. Recent advances in alien gene transfer in wheat. Euphytica. 1993;73:199-212. doi 10.1007/BF00036700

35. Jiang J., Friebe B., Gill B.S. Chromosome painting of Amigo wheat. Theor Appl Genet. 1994;89(7-8):811-813. doi 10.1007/BF00224501

36. Jiang M., Xaio Z.Q., Fu S.L., Tang Z.X. FISH karyotype of 85 common wheat cultivars/lines displayed by ND-FISH using oligonucleo­ tide probes. Cereal Res Commun. 2017;45:549-563. doi 10.1556/0806.45.2017.049

37. Koo D.H., Friebe B., Gill B.S. Homoeologous recombination: a novel and efficient system for broadening the genetic variability in wheat. Agronomy. 2020;10(8):1059. doi 10.3390/agronomy10081059

38. Kudriavtsev A.M. Intravarietal heterogeneity of durum wheat is an important component of species biodiversity. Russ J Genet. 2006; 42(10):1437-1440. doi 10.1134/S1022795406100139

39. Ladizinsky G. Founder effect in crop-plant evolution. Econ Bot. 1985; 39:191-199. doi 10.1007/BF02907844

40. Mason A.S., Wendel J.F. Homoeologous exchanges, segmental allopolyploidy, and polyploid genome evolution. Front Genet. 2020;11: 1014. doi 10.3389/fgene.2020.01014

41. Metakovsky E., Melnik V.A., Pascual L., Wrigley C.W. How important are genetic diversity and cultivar uniformity in wheat? The case of Gliadins. Genes (Basel). 2024;15(7):927. doi 10.3390/genes 15070927

42. Mickelson-Young L., Endo T.R., Gill B.S. A cytogenetic ladder map of the wheat homoeologous group 4 chromosomes. Theor Appl Genet. 1995;90(7-8):1007-1011. doi 10.1007/BF00222914

43. Mujeeb-Kazi A., Kazi A.G., Dundas I., Rasheed A., Ogbonnaya F.C., Kishii M., Bonnett D., Wang R.C., Xu S., Chen P., Mahmood T., Bux H., Farrakh S. Genetic diversity for wheat improvement as a conduit to food security. In: Sparks D.L. (Ed.) Advances in Agro­ nomy. Acad. Press, Burlington, 2013;179-257. doi 10.1016/B978-0-12-417187-9.00004-8

44. Novoselskaya-Dragovich A.Y., Bespalova L.A., Shishkina A.A., Melnik V.A., Upelniek V.P., Fisenko A.V., Dedova L.V., Kudryav­ tsev A.M. Genetic diversity of common wheat varieties at the gliadin-coding loci. Russ J Genet. 2015;51(3):262-271. doi 10.1134/ S1022795415030102

45. Paradis E., Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3): 526-528. doi 10.1093/bioinformatics/bty633

46. Reif J.C., Zhang P., Dreisigacker S., Warburton M.L., van Ginkel M., Hoisington D., Bohn M., Melchinger A.E. Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet. 2005;110(5):859-864. doi 10.1007/s00122-004-1881-8

47. Robinson D.F., Foulds L.R. Comparison of phylogenetic trees. Math Biosci. 1987;53(1-2):131-147. doi 10.1016/0025-5564(81)90043-2

48. Rokas A., Carroll S.B. More genes or more taxa? The relative contribution of gene number and taxon number to phylogenetic accuracy. Mol Biol Evol. 2005;22(5):1337-1344. doi 10.1093/molbev/msi121

49. Schliep K.P. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27(4):592-593. doi 10.1093/bioinformatics/btq706

50. Seal A.G. C-banded wheat chromosomes in wheat and triticale. Theor Appl Genet. 1982;63(1):39-47. doi 10.1007/BF00303488

51. Serpolay-Besson E., Dawson J., Chable V., van Bueren E.L., Osman A., Pino S., Silveri D., Goldringer I. Diversity of different farmer and modern wheat varieties cultivated in contrasting organic farming conditions in western Europe and implications for European seed and variety legislation. Org Agric. 2011;1(3):127-145. doi 10.1007/s13165-011-0011-6

52. Sharma M., Punya S., Gupta B.B. Role of wild relatives for development of climate-resilient varieties. In: Salgotra R.K., Zargar S.M. (Eds) Rediscovery of Genetic and Genomic Resources for Future Food Security. Springer, Singapore, 2020;303-314. doi 10.1007/978-981-15-0156-2_11

53. Sharma S., Schulthess A.W., Bassi F.M., Badaeva E.D., Neumann K., Graner A., Özkan H., Werner P., Knüpffer H., Kilian B. Introducing beneficial alleles from plant genetic resources into the wheat germplasm. Biology (Basel). 2021;10(10):982. doi 10.3390/biology 10100982

54. Sindhu A. Wheat genetic diversity trends as a result of domestication and plant breeding. Pharma Innovation. 2022;11(6):427-433

55. State Register of Varieties and Hybrids of Agricultural Plants Admitted for Usage (National List): official publication. Moscow: Rosinformagrotech Publ., 2024 (in Russian) Tanksley S.D., McCouch S.R. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277(5329):1063-1066. doi 10.1126/science.277.5329.1063

56. Zeven A.C. Polyploidy and domestication: the origin and survival of polyploids in cytotype mixtures. In: Lewis W.H. (Ed.) Polyploidy. Basic Life Sciences. Vol. 13. Springer, 1980;385-407. doi 10.1007/978-1-4613-3069-1_20

57. Zeven A.C. Landraces: a review of definitions and classifications. Euphytica. 1998;104:127-139. doi 10.1023/A:1018683119237

58. Zhao X., Guo Y., Kang L., Yin C., Bi A., Xu D., Zhang Z., … Kear P., Wang J., Liu Z., Fu X., Lu F. Population genomics unravels the Holocene history of bread wheat and its relatives. Nat Plants. 2023; 9(3):403-419. doi 10.1038/s41477-023-01367-3

59. Zohary D., Hopf M., Weiss E. Domestication of Plants in the Old World. Oxford Univ. Press, 2012 Zurabishvili T.G., Iordansky A.B., Badaev N.S. Linear differentiation of cereal chromosomes. II. Polyploid wheats. Theor Appl Genet. 1978;51(5):201-210. doi 10.1007/BF00273766


Review

Views: 267

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)