Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Prebreeding studies of near-isogenic spring bread wheat lines, differing by presence or absence of the 3R(3D) chromosomal substitution from the triticale cultivar Satu

https://doi.org/10.18699/vjgb-25-85

Abstract

One of the sources of resistance to leaf and stem rust pathogens for bread wheat is the Australian spring triticale cultivar Satu, which carries highly effective linked SrSatu/LrSatu genes localized on chromosome 3R. However, they are little used in the practical breeding of Triticum aestivum L. The main reason for that is a low level of knowledge regarding the 3R(3D) chromosomal substitution. This paper presents the results of a comparative study of the agronomic value of near-isogenic spring bread wheat siblings, L16 and L17 = Satu/Saratovskaya 70//Saratovskaya 74/3/ Saratovskaya 74, differing by presence (L16 (3R(3D))) or absence (L17 (3D3D)) of chromosome 3R from Satu in 2023– 2024. The 3R(3D) chromosomal substitution in L16 was detected by cytogenetic analysis combining GISH with labeled Secale cereale genomic DNA and FISH with probes pSc119.2, pAs1. Line L16 is highly resistant to Puccinia triticina and P. graminis, including the Ug99 race. PCR analysis with DNA markers of Sr genes revealed the non-identity of the resistance gene in L16 to Sr genes: Sr2, Sr24, Sr25, Sr28, Sr31, Sr32, Sr36, Sr38, Sr39, Sr47 and Sr57. L16 was inferior to both L17 and the standard cultivar Saratovskaya 76 in terms of 1,000-grain weight. An analysis of productivity elements of the main ear revealed that the 3R(3D) substitution in L16 significantly reduced the length of the ear, increased the density of the ear and did not significantly affect the number of spikelets and the number of grains per ear and the grain weight per ear. The grain protein content in L16 did not significantly differ from its L17 siblings or Saratovskaya 76. Similarly, there were no significant differences in gluten content. However, gluten in L16 was weaker in comparison with line L17 and Saratovskaya 76. According to the complex trait of SDS sedimentation, L16 was inferior to L17, but did not significantly differ from the standard cultivar. According to the alveograph, L16 had significantly lower dough elasticity and flour strength, but in comparison with the standard cultivar, the decrease in flour strength was not significant. L16 showed a higher bread volume than Saratovskaya 76, but did not significantly differ from its L17 sibling. There was no difference in porosity for all three samples. In general, in terms of the complex of agronomically valuable traits, the spring bread wheat line L16 (3R(3D)) requires further work to improve its breeding value.

About the Authors

S. N. Sibikeev
Federal Center of Agriculture Research of the South-East Region
Russian Federation

 Saratov 



I. G. Adonina
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk 



A. E. Druzhin
Federal Center of Agriculture Research of the South-East Region
Russian Federation

 Saratov 



Z. E. Fitileva
Federal Center of Agriculture Research of the South-East Region
Russian Federation

 Saratov 



O. A. Baranova
All-Russian Research Institute of Plant Protection
Russian Federation

 Pushkin, St. Petersburg 



References

1. Adhikari K.N. Genetic studies of stem rust resistance in oat and triticale: Phd thesis. The University of Sydney, 1996 Adhikari K.N., McIntosh R.A. Inheritance of wheat stem rust resistance in triticale. Plant Breed. 1998:117(6):505-513. doi 10.1111/j.1439-0523.1998.tb02199.x

2. Badaeva E.D., Ruban A.S., Aliyeva-Schnorr L., Municio C., Hesse S., Houben A. In situ hybridization to plant chromosomes. In: Liehr T. (Ed.) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, 2017;477-494. doi 10.1007/978-3-662-52959-1_49

3. Baranova O., Solyanikova V., Kyrova E., Kon’kova E., Gaponov S., Sergeev V., Shevchenko S., … Tarhov A., Vasilova N., Askhadullin D., Askhadullin D., Sibikeev S. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635. doi 10.3390/agriculture13030635

4. Baranova O.A., Adonina I.G., Sibikeev S.N. Molecular cytogenetic characteristics of new spring bread wheat introgressive lines resistant to stem rust. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2024;28(4):377-386. doi 10.18699/vjgb-24-43

5. Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in secale species. Cell. 1980;19(2):545-560. doi 10.1016/0092-8674(80)90529-2

6. Dymchenko A.M., Nazarova L.N., Zhemchuzhina A.I. Promising and released varieties of winter wheat differing in resistance to brown rust. Selektsiya i Semenovodstvo = Breeding and Seed Industry. 1990;5:16-18 (in Russian)

7. Faris J.D., Xu S.S., Cai X., Friesen T.L., Jin Y. Molecular and cytogenetic characterization of a durum wheat – Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res. 2008;16(8):1097-1105. doi 10.1007/s10577-008-1261-3

8. Helguera M., Khan I.A., Kolmer J., Lijavetzky D., Zhong-qi L., Dubcovsky J. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2003;43(5):1839-1847. doi 10.2135/cropsci 2003.1839

9. Jin Y., Singh R.P., Ward R.W., Wanyera R., Kinyua M., Njau P., Fetch T., Pretorius Z.A., Yahuaoui A. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis. 2007;91(9):1096-1099. doi 10.1094/PDIS-91-9-1096

10. Klindworth D.L., Niu Z., Chao S., Friesen T.L., Jin Y., Faris J.D., Cai X., Xu S.S. Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3 (Bethesda). 2012;2(6):665-673. doi 10.1534/g3.112.002386

11. Kon’kova E.A. Characteristics of the virulence of the wheat stem rust pathogen in the conditions of the Saratov region. Agrarnyy Nauchnyy Zhurnal = The Agrarian Scientific Journal. 2021;8: 23-27. doi 10.28983/asj.y2021i8pp23-27 (in Russian)

12. Lagudah E.S., McFadden H., Singh R.P., Huerta-Espino J., Bariana H.S., Spielmeyer W. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor Appl Genet. 2006;114(1):21-30. doi 10.1007/s00122-006-0406-z

13. Lelley T., Larter E.N. Meiotic regulation in triticale: interaction of the rye genotype and specific wheat chromosomes on meiotic pairing in the hybrid. Can J Jenet Cytol. 1980;22:1-6

14. Mago R., Bariana H.S., Dundas I.S., Spielmeyer W., Lawrence G.J., Pryor A.J., Ellis J.G. Development or PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet. 2005;111(3):496-504. doi 10.1007/s00122-005-2039-z

15. Mago R., Zhang P., Bariana H.S., Verlin D.C., Bansal U.K., Ellis J.G., Dundas I.S. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker assisted selection. Theor Appl Genet. 2009;119(8):1441-1450. doi 10.1007/s00122-009-1146-7

16. Mago R., Simkova H., Brown-Guedira H.G., Dreisigacker S., Breen J., Jin Y., Singh R., Appels R., Lagudah E.S., Ellis J., Dolezel J., Spielmeyer W. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet. 2011;122(4):735-744. doi 10.1007/s00122-010-1482-7

17. Mago R., Verlin D., Zhang P., Bansal U., Bariana H., Jin Y., Ellis J., Hoxha S., Dundas I. Development of wheat – Aegilops speltoides recombinants and simple PCR-based markers for Sr32 and a new stem rust resistance gene on the 2S#1 chromosome. Theor Appl Genet. 2013;126(12):2943-2955. doi 10.1007/s00122-013-2184-8

18. Martynov S.P. Statistical and Biometric Genetic Analysis in Crop Production and Breeding. AGROS Software Package, version 2.09. Tver, 1999 (in Russian)

19. McIntosh R.A., Wellings C.R., Park R.F. (Eds) Wheat Rusts. An Atlas of Resistance Genes. CSIRO Australia, 1995. Available: https://bgri.cornell.edu/wp-content/uploads/2021/01/wheat_rust_atlas_full.pdf

20. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat. 12th International Wheat Genetics Symposium. 8-13 September 2013. Yokohama, Japan, 2013. Available: https://shigen.nig.ac.jp/wheat/komugi/genes/macgene/2013/GeneCatalogueIntroduction.pdf

21. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of Gene Symbols for Wheat: 2018 Supplement. Annu Wheat Newsl. 2018;64:73-93

22. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of Gene Symbols for Wheat: 2022 Supplement. Annu Wheat Newsl. 2022;68:68-81

23. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4325. doi 10.1093/nar/8.19.4321

24. Naranjo T., Lacadena J.R., Giraldez R. Interaction between wheat and rye genomes on gomologous and gomoelogous pairing. Z. Pflanzenzuchtg. 1979;82:289-305

25. Orlovskaya О.А., Leonova I.N., Adonina I.G., Salina Е.А., Khotyle­ va L.V., Shumny V.К. Molecular-cytogenetic analysis of triticale and wheat lines with introgressions of the tribe Triticeae species genetic material. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2015;19(5):552-560. doi 10.18699/VJ15.072 (in Russian)

26. Peterson R.F., Campbell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res. 1948;26(5):496-500. doi 10.1139/cjr48c-033

27. Prins R., Groenewald J.Z., Marais G.F., Snape J.W., Koebner R.M.D. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet. 2001;103(4):618-624. doi 10.1007/PL00002918

28. Rahmatov M., Rouse M.N., Steffenson B.J., Anderson S.C., Wanyera R., Pretorius Z.A., Houben A., Kumarse N., Bhavani S., Johanson E. Sources of stem rust resistance in wheat-alien introgression lines. Plant Dis. 2016;100(6):1101-1109. doi 10.1094/PDIS-12-15-1448-RE

29. Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep. 1986; 4:104-109. doi 10.1007/BF02732107

30. Rouse M.N., Nava I.C., Chao S., Anderson J.A., Jin Y. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet. 2012; 125(5):877-885. doi 10.1007/s00122-012-1879-6

31. Salina E., Borner A., Leonova I., Korzun V., Laikova L., Maystrenko O., Roder M.S. Microsatellite mapping of the induced sphaerococcoid mutation genes in Triticum aestivum. Theor Appl Genet. 2000; 100:686-689. doi 10.1007/s001220051340

32. Salina E.A., Lim Y.K., Badaeva E.D., Scherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Y., Zoshchuk S.A., Leitch A. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49(8):1023-1035. doi 10.1139/g06-050

33. Schneider A., Linc G., Molnar-Lang M., Graner A.Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122(5):396-400. doi 10.1046/j.1439-0523.2003.00891.x

34. Schubert I., Shi F., Fuchs J., Endo T.R. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J. 1998;14(4):489-495. doi 10.1046/j.1365-313X.1998.00125.x

35. Sibikeev S.N., Druzhin A.E. Prebreeding research of near-isogenic lines of spring bread wheat with a combination of translocations from Agropyron elongatum (Host.) Р.В. and Aegilops ventricosa Tausch. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2015;19(3):310-315. doi 10.18699/VJ15.040 (in Russian)

36. Sibikeev S.N., Krupnov V.A. Evolution of leaf rust and protection from it in the Volga region. Vestnik Saratovskogo Gosuniversiteta im. N.I. Vavilova = The Bulletin Saratov State Agrarian University in Honor of N.I. Vavilov. 2007;S:92-94 (in Russian)

37. Sibikeev S.N., Druzhin A.E., Gultyaeva E.I., Andreeva L.V. Analysing effects of 4AS.4AL-7S#2S translocations upon yields and grain quality of spring milling wheat. Uspekhi Sovremennogo Estestvoznaniya = Advances in Current Natural Sciences. 2019;8:34-38. doi 10.17513/use.37179 (in Russian)

38. Singh S.J., McIntosh R.A. Allelism of two genes for stem rust resistance in triticale. Euphytica. 1988;38:185-189. doi 10.1007/BF00040190

39. Stakman E.C., Stewart D.M., Loegering W.Q. Identification of Physiologic Races of Puccinia graminis var. tritici. Washington, DC, USA: United States Department of Agriculture – Agricultural Research Service, 1962. Available: https://www.ars.usda.gov/ARSUserFiles/50620500/Cerealrusts/Pgt/Stakman_code_Pgt.pdf

40. Tsilo T.J., Jin Y., Anderson J.A. Diagnostic microsatellite markers for detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci. 2008;48(1):253-261. doi 10.2135/cropsci2007.04.0204

41. Wan H., Yang M., Li J., Wang Q., Liu Z., Zhang J., Li S., Yang N., Yang W. Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China. Mol Breed. 2023;43(5):40. doi 10.1007s11032-023-01386-0

42. Weng Y., Azhaguvel P., Devkota R.N., Rudd J.C. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheatrye translocations in wheat background. Plant Breed. 2007;126(5): 482-486. doi 10.1111/j.1439-0523.2007.01331.x


Review

Views: 281

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)