Preview

Vavilov Journal of Genetics and Breeding

Advanced search

DNA damage reflected in the evolution of G-runs in genomes

https://doi.org/10.18699/vjgb-25-98

Abstract

   DNA oxidation is one of the main types of damage to the genetic material of living organisms. Of the many dozens of oxidative lesions, the most abundant is 8-oxoguanine (8-oxoG), a premutagenic base that leads to G→T transversions during replication. Double-stranded DNA can conduct holes through the π system of stacked nucleobases. Such electron vacancies are ultimately localized at the 5’-terminal nucleotides of polyguanine runs (G-runs), making these positions characteristic sites of 8-oxoG formation. While such properties of G-runs have been studied in vitro at the level of chemical reactivity, the extent to which they can influence mutagenesis spectra in vivo remains unclear. Here, we have analyzed the nucleotide context of G-runs in a representative set of 62 high-quality prokaryotic genomes and in the human telomere-to-telomere genome. G-runs were, on average, shorter than polyadenine runs (A- runs), and the probability of a G-run being elongated by one nucleotide is lower than in the case of A-runs. The re presentation of T in the position 5’-flanking G-runs is increased, especially in organisms with aerobic metabolism, which is consistent with the model of preferential G→T substitutions at the 5’-position with 8-oxoG as a precursor. Conversely, the frequency of G and C is increased and the frequency of T is decreased in the position 5’-flanking A- runs. A biphasic pattern of G-run expansion is observed in the human genome: the probability of sequences longer than 8–9 nucleotides being elongated by one nucleotide increases significantly. An increased representation of C in the 5’-flanking position to long G-runs was found, together with an elevated frequency of 5’-G→A substitutions in telomere repeats. This may indicate the existence of mutagenic processes whose mechanism has not yet been charac terized but may be associated with DNA polymerase errors during replication of the products of further oxidation of 8-oxoG.

About the Authors

I. R. Grin
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences
Россия

Novosibirsk



D. O. Zharkov
Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Россия

Novosibirsk



References

1. Adhikary A., Khanduri D., Sevilla M.D. Direct observation of the hole protonation state and hole localization site in DNA­oligomers. J Am Chem Soc. 2009;131(24):8614-8619. doi: 10.1021/ja9014869

2. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A.J.R., Behjati S., Biankin A.V., Bignell G.R., … Campo E., Shibata T., Pfister S.M., Campbell P.J., Stratton M.R. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415-421. doi: 10.1038/nature12477

3. Bansal A., Kaushik S., Kukreti S. Non­canonical DNA structures: diversity and disease association. Front Genet. 2022;13:959258. doi: 10.3389/fgene.2022.959258

4. Billard P., Poncet D.A. Replication stress at telomeric and mitochondrial DNA: common origins and consequences on ageing. Int J Mol Sci. 2019;20(19):4959. doi: 10.3390/ijms20194959

5. Bonnell E., Pasquier E., Wellinger R.J. Telomere replication: solving multiple end replication problems. Front Cell Dev Biol. 2021;9: 668171. doi: 10.3389/fcell.2021.668171

6. Cadet J., Douki T., Ravanat J.-L. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells. Acc Chem Res. 2008;41(8):1075-1083. doi: 10.1021/ar700245e

7. Cadet J., Davies K.J.A., Medeiros M.H.G., Di Mascio P., Wagner J.R. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med. 2017;107:13-34. doi: 10.1016/j.freeradbiomed.2016.12.049

8. Chatterjee N., Walker G.C. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58(5):235-263. doi: 10.1002/em.22087

9. Chiorcea­Paquim A.­M. 8­oxoguanine and 8­oxodeoxyguanosine bio­markers of oxidative DNA damage : a review on HPLC–ECD de­ termination. Molecules. 2022;27(5):1620. doi: 10.3390/molecules27051620

10. Cho B.P., Kadlubar F.F., Culp S.J., Evans F.E. 15N nuclear magnetic resonance studies on the tautomerism of 8-hydroxy-2′-deoxy guano sine, 8­hydroxyguanosine, and other C8­substituted guanine nucleosides. Chem Res Toxicol. 1990;3(5):445-452. doi: 10.1021/tx00017a010

11. Dizdaroglu M., Coskun E., Jaruga P. Measurement of oxidatively induced DNA damage and its repair, by mass spectrometric techniques. Free Radic Res. 2015;49(5):525­548. doi: 10.3109/10715762.2015.1014814

12. ESCODD (European Standards Committee on Oxidative DNA Da­mage), Gedik C.M., Collins A. Establishing the background level of base oxidation in human lymphocyte DNA: results of an interlaboratory validation study. FASEB J. 2005;19(1):82­84. doi: 10.1096/fj.04­1767fje

13. Fazzari M.J., Greally J.M. Epigenomics: beyond CpG islands. Nat Rev Genet. 2004;5(6):446­455. doi: 10.1038/nrg1349

14. Fleming A.M., Burrows C.J. Formation and processing of DNA damage substrates for the hNEIL enzymes. Free Radic Biol Med. 2017;107:35-52. doi: 10.1016/j.freeradbiomed.2016.11.030

15. Fleming A.M., Burrows C.J. Chemistry of ROS-mediated oxidation to the guanine base in DNA and its biological consequences. Int J Radiat Biol. 2022;98(3):452-460. doi: 10.1080/09553002.2021.2003464

16. Genereux J.C., Barton J.K. Mechanisms for DNA charge transport. Chem Rev. 2010;110(3):1642-1662. doi: 10.1021/cr900228f

17. Giese B. Long­distance electron transfer through DNA. Annu Rev Biochem. 2002;71:51­70. doi: 10.1146/annurev.biochem.71.083101.134037

18. Halliwell B., Gutteridge J.M.C. Free Radicals in Biology and Medi­cine. Oxford Univ. Press, 2015

19. Henikoff S., Henikoff J.G. Amino acid substitution matrices from pro­tein blocks. Proc Natl Acad Sci USA. 1992;89(22):10915­10919. doi: 10.1073/pnas.89.22.10915

20. Higa M., Fujita M., Yoshida K. DNA replication origins and fork progression at mammalian telomeres. Genes. 2017;8(4):112. doi: 10.3390/genes8040112

21. Ijdo J.W., Baldini A., Ward D.C., Reeders S.T., Wells R.A. Origin of human chromosome 2: an ancestral telomere­telomere fusion. Proc Natl Acad Sci USA. 1991;88(20):9051­9055. doi: 10.1073/pnas.88.20.9051

22. Kino K., Kawada T., Hirao­Suzuki M., Morikawa M., Miyazawa H. Products of oxidative guanine damage form base pairs with guanine. Int J Mol Sci. 2020;21(20):7645. doi: 10.3390/ijms21207645

23. Koh G., Degasperi A., Zou X., Momen S., Nik­Zainal S. Mutational signatures: emerging concepts, caveats and clinical applications. Nat Rev Cancer. 2021;21(10):619-637. doi: 10.1038/s41568-021-00377-7

24. Kouchakdjian M., Bodepudi V., Shibutani S., Eisenberg M., Johnson F., Grollman A.P., Patel D.J. NMR structural studies of the ionizing radiation adduct 7­hydro­8­oxodeoxyguanosine (8­oxo­7H­dG) opposite deoxyadenosine in a DNA duplex. 8­Oxo­7H­dG(syn)·dA(anti) alignment at lesion site. Biochemistry. 1991;30(5):1403-1412. doi: 10.1021/bi00219a034

25. Kucab J.E., Zou X., Morganella S., Joel M., Nanda A.S., Nagy E., Gomez C., Degasperi A., Harris R., Jackson S.P., Arlt V.M., Phillips D.H., Nik­Zainal S. A compendium of mutational signatures of environmental agents. Cell. 2019;177(4):821-836.e816. doi: 10.1016/j.cell.2019.03.001

26. Kunkel T.A., Bebenek K. DNA replication fidelity. Annu Rev Biochem. 2000;69:497­529. doi: 10.1146/annurev.biochem.69.1.497

27. Kurbanyan K., Nguyen K.L., To P., Rivas E.V., Lueras A.M.K., Kosinski C., Steryo M., González A., Mah D.A., Stemp E.D.A. DNA­protein cross­linking via guanine oxidation: dependence upon protein and photosensitizer. Biochemistry. 2003;42(34):10269-10281. doi: 10.1021/bi020713p

28. Liao X., Zhu W., Zhou J., Li H., Xu X., Zhang B., Gao X. Repetitive DNA sequence detection and its role in the human genome. Commun Biol. 2023;6:954. doi: 10.1038/s42003-023-05322-y

29. Lipscomb L.A., Peek M.E., Morningstar M.L., Verghis S.M., Miller E.M., Rich A., Essigmann J.M., Williams L.D. X-ray structure of a DNA decamer containing 7,8­dihydro­8­oxoguanine. Proc Natl Acad Sci USA. 1995;92(3):719-723. doi: 10.1073/pnas.92.3.719

30. Liu B., Xue Q., Tang Y., Cao J., Guengerich F.P., Zhang H. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage. Mutat Res. 2016;768:53-67. doi: 10.1016/j.mrrev.2016.03.006

31. Livingstone C.D., Barton G.J. Protein sequence alignments: a strategy for the hierarchical analysis of residue conservation. Comput Appl Biosci. 1993;9(6):745-756. doi: 10.1093/bioinformatics/9.6.745

32. Maga G., Villani G., Crespan E., Wimmer U., Ferrari E., Bertocci B., Hübscher U. 8­oxo­guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature. 2007;447(7144):606­608. doi: 10.1038/nature05843

33. McAuley-Hecht K.E., Leonard G.A., Gibson N.J., Thomson J.B., Watson W.P., Hunter W.N., Brown T. Crystal structure of a DNA duplex containing 8­hydroxydeoxyguanine­adenine base pairs. Biochemistry. 1994;33(34):10266-10270. doi: 10.1021/bi00200a006

34. McMurray C.T. Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet. 2010;11(11):786­799. doi: 10.1038/nrg2828

35. Miller H., Grollman A.P. Kinetics of DNA polymerase I (Klenow fragment exo–) activity on damaged DNA templates: effect of proximal and distal template damage on DNA synthesis. Biochemistry. 1997; 36(49):15336-15342. doi: 10.1021/bi971927n

36. Mirkin S.M. Expandable DNA repeats and human disease. Nature. 2007;447(7147):932-940. doi: 10.1038/nature05977

37. Moriya M. Single­stranded shuttle phagemid for mutagenesis studies in mammalian cells: 8­oxoguanine in DNA induces targeted G·C→T·A transversions in simian kidney cells. Proc Natl Acad Sci USA. 1993;90(3):1122-1126. doi: 10.1073/pnas.90.3.1122

38. Nurk S., Koren S., Rhie A., Rautiainen M., Bzikadze A.V., Mikheenko A., Vollger M.R., … Zook J.M., Schatz M.C., Eichler E.E., Miga K.H., Phillippy A.M. The complete sequence of a human genome. Science. 2022;376(6588):44-53. doi: 10.1126/science.abj6987

39. Okonechnikov K., Golosova O., Fursov M.; UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012; 28(8):1166­1167. doi: 10.1093/bioinformatics/bts091

40. O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., … Tatusova T., DiCuccio M., Kitts P., Murphy T.D., Pruitt K.D. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733-D745. doi: 10.1093/nar/gkv1189

41. Opresko P.L., Sanford S.L., De Rosa M. Oxidative stress and DNA damage at telomeres. Cold Spring Harb Perspect Biol. 2025;17(6): a041707. doi: 10.1101/cshperspect.a041707

42. Pfeiffer V., Lingner J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb Perspect Biol. 2013;5(5):a010405. doi: 10.1101/cshperspect.a010405

43. Pilati C., Shinde J., Alexandrov L.B., Assié G., André T., Hélias-Rodzewicz Z., Ducoudray R., Le Corre D., Zucman-Rossi J., Emile J.-F., Bertherat J., Letouzé E., Laurent-Puig P. Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas. J Pathol. 2017;242(1):10­15. doi: 10.1002/path.4880

44. Prorok P., Grin I.R., Matkarimov B.T., Ishchenko A.A., Laval J., Zharkov D.O., Saparbaev M. Evolutionary origins of DNA repair pathways: role of oxygen catastrophe in the emergence of DNA glycosylases. Cells. 2021;10(7):1591. doi: 10.3390/cells10071591

45. Richard G.­F., Kerrest A., Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol Mol Biol Rev. 2008;72(4):686­727. doi: 10.1128/MMBR.00011­08

46. Saito I., Nakamura T., Nakatani K., Yoshioka Y., Yamaguchi K., Sugiyama H. Mapping of the hot spots for DNA damage by one­electron oxidation: efficacy of GG doublets and GGG triplets as a trap in long­range hole migration. J Am Chem Soc. 1998;120(48):12686­ 12687. doi: 10.1021/ja981888i

47. Shibutani S., Takeshita M., Grollman A.P. Insertion of specific bases during DNA synthesis past the oxidation­damaged base 8­oxodG. Nature. 1991;349(6308):431-434. doi: 10.1038/349431a0

48. Sugiyama H., Saito I. Theoretical studies of GG-specific photoclea vage of DNA via electron transfer: significant lowering of ionization po­tential and 5′-localization of HOMO of stacked GG bases in B- form DNA. J Am Chem Soc. 1996;118(30):7063-7068. doi 10.1021/ja9609821

49. Taylor W.R. The classification of amino acid conservation. J Theor Biol. 1986;119(2):205­218. doi: 10.1016/S0022-5193(86)80075-3

50. Tubbs A., Nussenzweig A. Endogenous DNA damage as a source of genomic instability in cancer. Cell. 2017;168(4):644­656. doi: 10.1016/j.cell.2017.01.002

51. Viel A., Bruselles A., Meccia E., Fornasarig M., Quaia M., Canzonieri V., Policicchio E., … Maestro R., Giannini G., Tartaglia M., Alexandrov L.B., Bignami M. A specific mutational signature associated with DNA 8­oxoguanine persistence in MUTYH­defective colorectal cancer. EBioMedicine. 2017;20:39-49. doi: 10.1016/j.ebiom.2017.04.022

52. Wood M.L., Esteve A., Morningstar M.L., Kuziemko G.M., Essigmann J.M. Genetic effects of oxidative DNA damage: comparative mutagenesis of 7,8­-dihydro­8­oxoguanine and 7,8-­dihydro8­oxoadenine in Escherichia coli. Nucleic Acids Res. 1992;20(22): 6023-6032. doi: 10.1093/nar/20.22.6023

53. Yudkina A.V., Shilkin E.S., Endutkin A.V., Makarova A.V., Zharkov D.O. Reading and misreading 8­oxoguanine, a paradigmatic ambiguous nucleobase. Crystals. 2019;9(5):269. doi 10.3390/cryst9050269


Review

Views: 249

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)