Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Reconstruction and analysis of the gene network regulating apoptosis in hepatocellular carcinoma based on scRNA-seq data and the AND-System knowledge base

https://doi.org/10.18699/vjgb-25-102

Abstract

   Hepatocellular Carcinoma (HCC) is the most common primary liver cancer characterized by rapid progres­ sion, high mortality rate and therapy resistance. One of the key areas in studying the molecular mechanisms of HCC development is the analysis of disturbances in apoptosis processes in hepatocytes. Throughout life apoptosis en­sures the elimination of old and defective cells while the attenuation of this process serves as one of the leading fac­tors in carcinogenesis. In this study we reconstructed and analyzed the gene network regulating hepatocyte apo­ptosis in humans based on single­cell transcriptome sequencing (scRNA­seq) data and the ANDSystem know ledge base which employs artificial intelligence and computational systems biology methods. Comparative analysis of gene expression revealed weakened transcription of genes involved in the regulation of inflammatory processes and apoptosis in tumor hepatocytes compared to hepatocytes of normal liver tissue. The reconstructed network included 116 differentially expressed genes annotated in Gene Ontology as genes involved in the apoptotic pro­cess (apoptotic process GO:0006915), along with their 116 corresponding protein products. It also included 16 ad­ditional proteins that, while lacking GO apoptosis annotation, were differentially expressed in HCC and interacting with genes and proteins participating in the apoptosis process. Computational analysis of the gene network identi­ fied several key protein products encoded by the genes NFKB1, MMP9, BCL2, A4, CDKN1A, CDK1, ERBB2, G3P, MCL1, FOXO1. These proteins exhibited both a high degree of connectivity with other network objects and differential ex­pression in HCC. Of particular interest are proteins CDKN1A, ERBB2, IL8, and EGR1, which are not annotated in Gene Ontology as apoptosis participants but have a statistically significant number of interactions with genes involved in apoptosis. This indicates their role in regulating programmed cell death. The obtained results can guide the design of new experiments studying the role of apoptosis in carcinogenesis and aid in the search for novel therapeutic targets and approaches for HCC therapy using apoptosis modulation in malignant hepatocytes. Furthermore, the proposed approach to reconstructing and analyzing the apoptosis regulation gene network in hepatocellular car­cinoma can be applied to analyze other tumor forms providing a systemic understanding of disturbances in key regulatory processes in oncogenesis and potential therapy targets.

About the Authors

A. V. Adamovskaya
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



I. V. Yatsyk
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



M. A. Kleshchev
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



P. S. Demenkov
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



T. V. Ivanisenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



V. A. Ivanisenko
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Russian Federation

Novosibirsk



References

1. Abbas T., Dutta A. p21 in cancer: intricate networks and multiple activities. Nat Rev Cancer. 2009;9(6):400-414. doi: 10.1038/nrc2657

2. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Volianskaia A.R., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Kolchanov N.A., Lavrik I.N., Ivanisenko V.A. Reconstruction of the regulatory hypermethylation network controlling hepatocellular carcinoma development during hepatitis C viral infection. J Integr Bioinform. 2023;20(3): 20230013. doi: 10.1515/jib-2023-0013

3. Banjara S., Suraweera C.D., Hinds M.G., Kvansakul M. The Bcl-2 family: Ancient origins, conserved structures, and divergent mechanisms. Biomolecules. 2020;10(1):128. doi: 10.3390/biom10010128

4. Butikova E.A., Basov N.V., Rogachev A.D., Gaisler E.V., Ivanisenko V.A., Demenkov P.S., Makarova A.A., … Pokrovsky A.G., Vinokurov N.A., Kanygin V.V., Popik V.M., Shevchenko O.A. Metabolomic and gene networks approaches reveal the role of mitochondrial membrane proteins in response of human melanoma cells to THz radiation. Biochim Biophys Acta Mol Cell Biol Lipids. 2025; 1870(2):159595. doi: 10.1016/j.bbalip.2025.159595

5. Chen Y., Lu A., Hu Z., Li J., Lu J. ERBB3 targeting: A promising approach to overcoming cancer therapeutic resistance. Cancer Lett. 2024;599:217146. doi: 10.1016/j.canlet.2024.217146

6. Choi S.H., Park J.Y., Kang W., Kim S.U., Kim Y., Ahn S.H., Ro S.W., Han K.H. Knockdown of HIF-1α and IL-8 induced apoptosis of hepatocellular carcinoma triggers apoptosis of vascular endothelial cells. Apoptosis. 2016;21(1):85-95. doi: 10.1007/s10495-015-1185-2

7. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. ANDVisio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2011;11(3-4):149-161. doi: 10.3233/ISB-2012-0449

8. Demenkov P.S., Antropova E.A., Adamovskaya A.V., Mishchenko E.L., Khlebodarova T.M., Ivanisenko T.V., Ivanisenko N.V., Venzel A.S., Lavrik I.N., Ivanisenko V.A. Prioritization of potential pharmacological targets for the development of anti-hepatocarcinoma drugs modulating the extrinsic apoptosis pathway: the reconstruction and analysis of associative gene networks help. Vavilov J Genet Breed. 2023;27(7):784-793. doi: 10.18699/VJGB-23-91

9. Dhanasekaran R., Bandoh S., Roberts L.R. Molecular pathogenesis of hepatocellular carcinoma and impact of therapeutic advances. F1000Res. 2016;5:879. doi: 10.12688/f1000research.6946.1

10. Fabregat I. Dysregulation of apoptosis in hepatocellular carcinoma cells. World J Gastroenterol. 2009;15(5):513-520. doi: 10.3748/wjg.15.513

11. Ganesan P., Kulik L.M. Hepatocellular carcinoma: New developments. Clin Liver Dis. 2023;27(1):85-102. doi: 10.1016/j.cld.2022.08.004

12. Gupta R., Kadhim M.M., Turki Jalil A., Obayes A.M., Aminov Z., Alsaikhan F., Ramírez-Coronel A.A., Ramaiah P., Tayyib N.A., Luo X. Multifaceted role of NF-κB in hepatocellular carcinoma therapy: Molecular landscape, therapeutic compounds and nanomaterial approaches. Environ Res. 2023;228:115767. doi: 10.1016/j.envres.2023.115767

13. Hajizadeh M., Hajizadeh F., Ghaffarei S., Amin Doustvandi M., Hajizadeh K., Yaghoubi S.M., Mohammadnejad F., Khiabani N.A., Mousavi P., Baradaran B. MicroRNAs and their vital role in apoptosis in hepatocellular carcinoma: miRNA-based diagnostic and treatment methods. Gene. 2023;888:147803. doi: 10.1016/j.gene.2023.147803

14. Han X., Wu J., Sha Z., Lai R., Shi J., Mi L., Yin F., Guo Z. Dicer suppresses hepatocellular carcinoma via interleukin-8 pathway. Clin Med Insights Oncol. 2023;17:11795549231161212. doi: 10.1177/11795549231161212

15. Ivanisenko T.V., Saik O.V., Demenkov P.S., Ivanisenko N.V., Savostianov A.N., Ivanisenko V.A. ANDDigest: a new web-based module of ANDSystem for the search of knowledge in the scientific literature. BMC Bioinformatics. 2020;21(11):228. doi: 10.1186/s12859-020-03557-8

16. Ivanisenko T.V., Demenkov P.S., Kolchanov N.A., Ivanisenko V.A. The new version of the ANDDigest tool with improved ai-based short names recognition. Int J Mol Sci. 2022;23(23):14934. doi: 10.3390/ijms232314934

17. Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. An accurate and efficient approach to knowledge extraction from scientific publications using structured ontology models, graph neural networks, and large language models. Int J Mol Sci. 2024;25(21):11811. doi: 10.3390/ijms252111811

18. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. AND-System: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Systems Biol. 2015;9(Suppl. 2):S2. doi: 10.1186/1752-0509-9-S2-S2

19. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the AND-System tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl. 1):34. doi: 10.1186/S12859-018-2567-6

20. Ivanisenko V.A., Gaisler E.V., Basov N.V., Rogachev A.D., Cheresiz S.V., Ivanisenko T.V., Demenkov P.S., Mishchenko E.L., Khripko O.P., Khripko Y.I., Voevoda S.M. Plasma metabolomics and gene regulatory networks analysis reveal the role of nonstructural SARS-CoV-2 viral proteins in metabolic dysregulation in COVID-19 patients. Sci Rep. 2022;12(1):19977. doi: 10.1038/s41598-022-24170-0

21. Ivanisenko V.A., Rogachev A.D., Makarova A.A., Basov N.V., Gaisler E.V., Kuzmicheva I.N., Demenkov P.S., … Kolchanov N.A., Plesko V.V., Moroz G.B., Lomivorotov V.V., Pokrovsky A.G. AI- assisted identification of primary and secondary metabolomic mar kers for postoperative delirium. Int J Mol Sci. 2024;25(21): 11847. doi: 10.3390/ijms252111847

22. Jiang S., Lu H., Pan Y., Yang A., Aikemu A., Li H., Hao R., Huang Q., Qi X., Tao Z., Wu Y., Quan C., Zhou G., Lu Y. Characterization of the distinct immune microenvironments between hepatocellular carcinoma and intrahepatic cholangiocarcinoma. Cancer Lett. 2024; 588:216799. doi: 10.1016/j.canlet.2024.216799

23. Jiang Y., Han Q.J., Zhang J. Hepatocellular carcinoma: Mechanisms of progression and immunotherapy. World J Gastroenterol. 2019; 25(25):3151-3167. doi: 10.3748/wjg.v25.i25.3151

24. Kashyap D., Garg V.K., Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 2021;125:73-120. doi: 10.1016/bs.apcsb.2021.01.003

25. Khlebodarova T.M., Demenkov P.S., Ivanisenko T.V., Antropova E.A., Lavrik I.N., Ivanisenko V.A. Primary and secondary micro-RNA modulation the extrinsic pathway of apoptosis in hepatocellular carcinoma. Mol Biol. 2023;57(2):165-175. doi: 10.1134/S0026893323020103

26. Ladd A.D., Duarte S., Sahin I., Zarrinpar A. Mechanisms of drug resistance in HCC. Hepatology. 2024;79(4):926-940. doi: 10.1097/HEP.0000000000000237

27. Lambert S.A., Jolma A., Campitelli L.F., Das P.K., Yin Y., Albu M., Chen X., Taipale J., Hughes T.R., Weirauch M.T. The human transcription factors. Cell. 2018;172(4):650-665. doi: 10.1016/j.cell.2018.01.029

28. Larina I.M., Pastushkova L.Kh., Tiys E.S., Kireev K.S., Kononikhin A.S., Starodubtseva N.L., Popov I.A., Custaud M.A., Dobrokhotov I.V., Nikolaev E.N., Kolchanov N.A., Ivanisenko V.A. Permanent proteins in the urine of healthy humans during the Mars-500 experiment. J Bioinform Comput Biol. 2015;13(1):1540001. doi: 10.1142/S0219720015400016

29. Li C., Xu J. Identification of potentially therapeutic target genes of hepatocellular carcinoma. Int J Environ Res Public Health. 2020; 17(3):1053. doi: 10.3390/ijerph17031053

30. Li X.Y., Shen Y., Zhang L., Guo X., Wu J. Understanding initiation and progression of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta Rev Cancer. 2022;1877(3):188720. doi: 10.1016/j.bbcan.2022.188720

31. Liang Y., Yang C., Lin Y., Parviz Y., Sun K., Wang W., Ren M., Yan L. Matrix metalloproteinase 9 induces keratinocyte apoptosis through FasL/Fas pathway in diabetic wound. Apoptosis. 2019;24(7-8):542-551. doi: 10.1007/s10495-019-01536-w

32. Love M.I., Huber W., Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014; 15(12):550. doi: 10.1186/s13059-014-0550-8

33. Lu Y., Yang A., Quan C., Pan Y., Zhang H., Li Y., Gao C., Lu H., Wang X., Cao P., Chen H., Lu S., Zhou G. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022;13(1):4594. doi: 10.1038/s41467-022-32283-3

34. Ma B., Li J., Yang W.K., Zhang M.G., Xie X.D., Bai Z.T. N-trans-feruloyloctopamine wakes up BBC3, DDIT3, CDKN1A, and NOXA signals to accelerate HCC cell apoptosis. Anal Cell Pathol (Amst). 2021;2021:1560307. doi: 10.1155/2021/1560307

35. Manu K.A., Cao P.H.A., Chai T.F., Casey P.J., Wang M. p21cip1/waf1 coordinate autophagy, proliferation and apoptosis in response to metabolic stress. Cancers (Basel). 2019;11(8):1112. doi: 10.3390/cancers11081112

36. Massacci G., Perfetto L., Sacco F. The Cyclin-dependent kinase 1: more than a cell cycle regulator. Br J Cancer. 2023;129(11):1707-1716. doi: 10.1038/s41416-023-02468-8

37. Momynaliev K.T., Kashin S.V., Chelysheva V.V., Selezneva O.V., Demina I.A., Serebryakova M.V., Alexeev D., Ivanisenko V.A., Aman E., Govorun V.M. Functional divergence of Helicobacter pylori related to early gastric cancer. J Proteome Res. 2010;9(1): 254-267. doi: 10.1021/pr900586w

38. Morana O., Wood W., Gregory C.D. The apoptosis paradox in cancer. Int J Mol Sci. 2022;23(3):1328. doi: 10.3390/ijms23031328

39. Moyer A., Tanaka K., Cheng E.H. Apoptosis in cancer biology and therapy. Annu Rev Pathol. 2025;20(1):303-328. doi: 10.1146/annurev-pathmechdis-051222-115023

40. Mustafin Z.S., Lashin S.A., Matushkin Yu.G. Phylostratigraphic analysis of gene networks of human diseases. Vavilov J Genet Breed. 2021;25(1):46-56. doi: 10.18699/VJ21.006

41. Nagata S., Tanaka M. Programmed cell death and the immune system. Nat Rev Immunol. 2017;17(5):333-340. doi: 10.1038/nri.2016.153

42. Narkevich A.N., Vinogradov K.A., Grjibovski A.M. Multiple comparisons in biomedical research: the problem and its solutions. Hum Ecol. 2020;10:55-64. doi 10.33396/1728-0869-2020-10-55-64 (in Russian)

43. Newton K., Strasser A., Kayagaki N., Dixit V.M. Cell death. Cell. 2024; 187(2):235-256. doi: 10.1016/j.cell.2023.11.044

44. Ogunwobi O.O., Harricharran T., Huaman J., Galuza A., Odumuwagun O., Tan Y., Ma G.X., Nguyen M.T. Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol. 2019;25(19): 2279-2293. doi: 10.3748/wjg.v25.i19.2279

45. Pan M., Luo M., Liu L., Chen Y., Cheng Z., Wang K., Huang L., Tang N., Qiu J., Huang A., Xia J. EGR1 suppresses HCC growth and aerobic glycolysis by transcriptionally downregulating PFKL. J Exp Clin Cancer Res. 2024;43(1):35. doi: 10.1186/s13046-024-02957-5

46. Raval P.K., Martin W.F., Gould S.B. Mitochondrial evolution: Gene shuffling, endosymbiosis, and signaling. Sci Adv. 2023;9(32): p.eadj4493. doi: 10.1126/sciadv.adj4493

47. Saik O.V., Nimaev V.V., Usmonov D.B., Demenkov P.S., Ivanisenko T.V., Lavrik I.N., Ivanisenko V.A. Prioritization of genes involved in endothelial cell apoptosis by their implication in lymphedema using an analysis of associative gene networks with AND-System. BMC Med Genomics. 2019;12(Suppl. 2):47. doi: 10.1186/s12920-019-0492-9

48. Sevenich L., Joyce J.A. Pericellular proteolysis in cancer. Genes Dev. 2014;28(21):2331-2347. doi: 10.1101/gad.250647.114

49. Sherman B.T., Hao M., Qiu J., Jiao X., Baseler M.W., Lane H.C., Imamichi T., Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50(W1):W216-W221. doi: 10.1093/nar/gkac194

50. Si-Tayeb K., Noto F.K., Nagaoka M., Nagaoka M., Li J., Battle M.A., Duris C., North P.E., Dalton S., Duncan S.A. Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology. 2010;51(1):297-305. doi: 10.1002/hep.23354

51. Šidák Z. Rectangular confidence regions for the means of multivariate normal distributions. J Am Stat Assoc. 1967;62(318):626-633. doi: 10.2307/2283989

52. Squair J.W., Gautier M., Kathe C., Anderson M.A., James N.D., Hutson T.H., Hudelle R., … Barraud Q., Levine A.J., La Manno G., Skinnider M.A., Courtine G. Confronting false discoveries in single-cell differential expression. Nat Commun. 2021;12(1):5692. doi: 10.1038/s41467-021-25960-2

53. Suraweera C.D., Banjara S., Hinds M.G., Kvansakul M. Metazoans and intrinsic apoptosis: An evolutionary analysis of the Bcl-2 family. Int J Mol Sci. 2022;23(7):3691. doi: 10.3390/ijms23073691

54. Thangavelu L., Altamimi A.S.A., Ghaboura N., Babu M.A., Roopashree R., Sharma P., Pal P., Choudhary C., Prasad G.V.S., Sinha A., Balaraman A.K., Rawat S. Targeting the p53-p21 axis in liver cancer: Linking cellular senescence to tumor suppression and progression. Pathol Res Pract. 2024;263:155652. doi: 10.1016/j.prp.2024.155652

55. Tong Y.-B., Shi M.-W., Qian S.H., Chen Y.-J., Luo Z.-H., Tu Y.-X., Xiong Y.-L., Geng Y.-J., Chen C., Chen Z.-X. GenOrigin: a comprehensive protein-coding gene origination database on the evolutionary timescale of life. J Genet Genomics. 2021;48(12):1122-1129. doi: 10.1016/j.jgg.2021.03.018

56. Traag V.A., Waltman L., van Eck N.J. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 2019;9:5233. doi: 10.1038/s41598-019-41695-z

57. Vahedi S., Chueh F.Y., Dutta S., Chandran B., Yu C.L. Nuclear lymphocyte-specific protein tyrosine kinase and its interaction with CR6-interacting factor 1 promote the survival of human leukemic T cells. Oncol Rep. 2015;34(1):43-50. doi: 10.3892/or.2015.3990

58. Verma S., Kesh K., Gupta A., Swarnakar S. An overview of matrix metalloproteinase 9 polymorphism and gastric cancer risk. Asian Pac J Cancer Prev. 2015;16(17):7393-7400. doi: 10.7314/apjcp.2015.16.17.7393

59. Wang B., Guo H., Yu H., Chen Y., Xu H., Zhao G. The role of the transcription factor EGR1 in cancer. Front Oncol. 2021;11:642547. doi: 10.3389/fonc.2021.642547

60. Wang P., Qian H., Xiao M., Lv J. Role of signal transduction pathways in IL-1β-induced apoptosis: Pathological and therapeutic aspects. Immun Inflamm Dis. 2023;11(1):e762. doi: 10.1002/iid3.762

61. Wolf F., Angerer P., Theis F. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. doi: 10.1186/s13059-017-1382-0

62. Wu X., Cao J., Wan X., Du S. Programmed cell death in hepatocellular carcinoma: mechanisms and therapeutic prospects. Cell Death Discov. 2024;10(1):356. doi: 10.1038/s41420-024-02116-x

63. Xiang S., Sun Z., He Q., Yan F., Wang Y., Zhang J. Aspirin inhibits ErbB2 to induce apoptosis in cervical cancer cells. Med Oncol. 2010;27(2):379-387. doi: 10.1007/s12032-009-9221-0

64. Xue R., Zhang Q., Cao Q., Kong R., Xiang X., Liu H., Feng M., … Zhan Q., Deng M., Zhu J., Zhang Z., Zhang N. Liver tumour immune microenvironment subtypes and neutrophil heterogeneity. Nature. 2022;612(7938):141-147. doi: 10.1038/s41586-022-05400-x

65. Yang Y.M., Kim S.Y., Seki E. Inflammation and liver cancer: molecular mechanisms and therapeutic targets. Semin Liver Dis. 2019;39(1): 26-42. doi: 10.1055/s-0038-1676806

66. Yatsyk I.V., Volyanskaya A.R, Kleshchev M.A., Antropova E.A., Demenkov P.S., Ivanisenko T.V., Ivanisenko V.A. Reconstruction and computational analysis of the insulin response gene network in human type 2 diabetes using transcriptomic data. Gene Expr. 2025 (в печати)

67. Zhang Q.Y., Ho D.W., Tsui Y.M., Ng I.O. Single-cell transcriptomics of liver cancer: hype or insights? Cell Mol Gastroenterol Hepatol. 2022;14(3):513-525. doi: 10.1016/j.jcmgh.2022.04.014

68. Zmasek C.M., Godzik A. Evolution of the animal apoptosis network. Cold Spring Harb Perspect Biol. 2013;5(3):a008649. doi: 10.1101/cshperspect.a008649

69. Zou Y., Wan X., Zhou Q., Zhu G., Lin S., Tang Q., Yang X., Wang S. Mechanisms of drug resistance in hepatocellular carcinoma. Biol Proced Online. 2025;27(1):19. doi: 10.1186/s12575-025-00281-6


Review

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)