Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Выявление белков, регулирующих фенотип-ассоциированные гены макрофагов группы М2: биоинформатический анализ

https://doi.org/10.18699/vjgb-25-104

Аннотация

   Макрофаги – клетки иммунной системы, выполняющие в организме различные, часто противоположные функции в зависимости от поступающих сигналов микроокружения. Это возможно благодаря пластичности макрофагов, позволяющей кардинально менять фенотипические признаки и профили экспрессии генов, а также возвращаться в исходное, неактивированное состояние. В зависимости от действующих на клетку индукторов макрофаги поляризуются в различные функциональные состояния. Принято выделять пять основных фенотипов активированных макрофагов: М1, M2a, M2b, M2c и M2d. Хотя количество полногеномных транскриптомных и протеомных данных, показывающих различия между основными фенотипами макрофагов и неактивированными макрофагами (M0), растет стремительно, все еще остаются вопросы, касающиеся механизмов регуляции профилей экспрессии генов и белков у макрофагов разных фенотипов. Нами были составлены списки белков, ассоциированных с фенотипами макрофагов M1, M2a, M2b, M2c, M2d (фенотип-ассоциированные белки), проанализированы данные о возможных посредниках поляризации макрофагов. Далее с использованием компьютерной системы AND-System проведен поиск и анализ связей между потенциальными регуляторными белками и генами, кодирующими белки, ассоциированные с фенотипами группы M2, получены оценки статистической значимости этих связей. Результаты указывают на то, что различия в фенотипах макрофагов М2a, M2b, M2c, M2d могут быть обусловлены регуляторными действиями белков JUN, IL8, NFAC2, CCND1 и YAP1. Уровень их экспрессии варьируется в зависимости от фенотипов группы M2, что в свою очередь приводит к различным уровням экспрессии генов, связанных с конкретными фенотипами.

Перенести в английский вариант

   Macrophages are immune system cells that perform various, often opposing, functions in the organism depending on the incoming microenvironment signals. This is possible due to the plasticity of macrophages, which allows them to radically alter their phenotypic characteristics and gene expression profiles, as well as return to their original, non-activated state. Depending on the inductors acting on the cell, macrophages are activated into various functional states. There are five main phenotypes of activated macrophages: M1, M2a, M2b, M2c, and M2d. Although the amount of genome-wide transcriptomic and proteomic data showing differences between major macrophage phenotypes and non-activated macrophages (M0) is rapidly growing, questions regarding the mechanisms regulating gene and protein expression profiles in macrophages of different phenotypes still remain. We compiled lists of proteins associated with the macrophage phenotypes M1, M2a, M2b, M2c, and M2d (phenotype-associated proteins) and analyzed the data on potential mediators of macrophage polarization. Furthermore, using the computational system ANDSystem, we conducted a search and analysis of the relationships between potential regulatory proteins and the genes encoding the proteins associated with the M2 group phenotypes, obtaining estimates of the statistical significance of these relationships. The results indicate that the differences in the M2a, M2b, M2c, and M2d macrophage phenotypes may be attributed to the regulatory effects of the proteins JUN, IL8, NFAC2, CCND1, and YAP1. The expression levels of these proteins vary among the M2 group phenotypes, which in turn leads to different levels of gene expression associated with specific phenotypes.

Об авторах

Е. А. Антропова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



И. В. Яцык
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



П. С. Деменков
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Т. В. Иванисенко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



В. А. Иванисенко
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Antropova E.A., Khlebodarova T.M., Demenkov P.S., Volianskaia A.R., Venzel A.S., Ivanisenko N.V., Gavrilenko A.D., Ivanisenko T.V., Adamovskaya A.V., Revva P.M., Kolchanov N.A., Lavrik I.N., Ivanisenko V.A. Reconstruction of the regulatory hypermethylation network controlling hepatocellular carcinoma development during hepa titis C viral infection. J Integr Bioinform. 2023;20(3): 20230013. doi: 10.1515/jib-2023-0013

2. Chhor V., Le Charpentier T., Lebon S., Oré M.V., Celador I.L., Josserand J., Degos V., Jacotot E., Hagberg H., Sävman K., Mallard C., Gressens P., Fleiss B. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun. 2013;32:70-85. doi: 10.1016/j.bbi.2013.02.005

3. Demenkov P.S., Ivanisenko T.V., Kolchanov N.A., Ivanisenko V.A. AND-Visio: a new tool for graphic visualization and analysis of literature mined associative gene networks in the ANDSystem. In Silico Biol. 2012;11(3-4):149-161. doi: 10.3233/ISB-2012-0449

4. Feng D., Huang W.Y., Niu X.L., Hao S., Zhang L.N., Hu Y.J. Significance of macrophage subtypes in the peripheral blood of children with systemic juvenile idiopathic arthritis. Rheumatol Ther. 2021; 8(4):1859-1870. doi: 10.1007/s40744-021-00385-x

5. Ghasemi M., Seidkhani H., Tamimi F., Rahgozar M., Masoudi-Nejad A. Centrality Measures in Biological Networks. Curr Bioinform. 2014;9:426-441. doi: 10.2174/15748936113086660013

6. Gurvich O.L., Puttonen K.A., Bailey A., Kailaanmäki A., Skirdenko V., Sivonen M., Pietikäinen S., Parker N.R., Ylä-Herttuala S., Kekarainen T. Transcriptomics uncovers substantial variability associated with alterations in manufacturing processes of macrophage cell therapy products. Sci Rep. 2020;10(1):14049. doi: 10.1038/s41598-020-70967-2

7. Heng W.S., Kruyt F.A.E., Cheah S.C. Understanding lung carcinogenesis from a morphostatic perspective: prevention and therapeutic potential of phytochemicals for targeting cancer stem cells. Int J Mol Sci. 2021;22(11):5697. doi: 10.3390/ijms22115697

8. Hirani D., Alvira C.M., Danopoulos S., Milla C., Donato M., Tian L., Mohr J., … Seeger W., Khatri P., Al Alam D., Dötsch J., Alejandre Alcazar M.A. Macrophage-derived IL-6 trans-signaling as a novel target in the pathogenesis of bronchopulmonary dysplasia. Eur Respir J. 2021;59(2):2002248. doi: 10.1183/13993003.02248-2020

9. Huang Y.H., Cai K., Xu P.P., Wang L., Huang C.X., Fang Y., Cheng S., Sun X.J., Liu F., Huang J.Y., Ji M.M., Zhao W.L. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH-CCL2/CSF1 axis. Signal Transduct Target Ther. 2021;6(1):10. doi: 10.1038/s41392-020-00437-8

10. Ivanisenko T.V., Demenkov P.S., Ivanisenko V.A. An accurate and efficient approach to knowledge extraction from scientific publications using structured ontology models, graph neural networks, and large language models. Int J Mol Sci. 2024;25(21):11811. doi: 10.3390/ijms252111811

11. Ivanisenko V.A., Saik O.V., Ivanisenko N.V., Tiys E.S., Ivanisenko T.V., Demenkov P.S., Kolchanov N.A. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst Biol. 2015;9(Suppl. 2):S2. doi: 10.1186/1752-0509-9-S2-S2

12. Ivanisenko V.A., Demenkov P.S., Ivanisenko T.V., Mishchenko E.L., Saik O.V. A new version of the AND-System tool for automatic extraction of knowledge from scientific publications with expanded functionality for reconstruction of associative gene networks by considering tissue-specific gene expression. BMC Bioinformatics. 2019; 20(Suppl. 1):34. doi: 10.1186/s12859-018-2567-6

13. Ivanisenko V.A., Basov N.V., Makarova A.A., Venzel A.S., Rogachev A.D., Demenkov P.S., Ivanisenko T.V., Kleshchev M.A., Gaisler E.V., Moroz G.B., Plesko V.V., Sotnikova Y.S., Patru shev Y.V., Lomivorotov V.V., Kolchanov N.A., Pokrovsky A.G. Gene networks for use in metabolomic data analysis of blood plasma from patients with postoperative delirium. Vavilovskii Zhurnal Genetiki i Selek­tsii = Vavilov J Genet Breed. 2023;27(7):768-775. doi: 10.18699/VJGB-23-89

14. Jalili M., Salehzadeh-Yazdi A., Gupta S., Wolkenhauer O., Yaghmaie M., Resendis-Antonio O., Alimoghaddam K. Evolution of centrality measurements for the detection of essential proteins in biological networks. Front Physiol. 2016;7:375. doi: 10.3389/fphys.2016.00375

15. Joerink M., Rindsjö E., van Riel B., Alm J., Papadogiannakis N. Placental macrophage (Hofbauer cell) polarization is independent of maternal allergen-sensitization and presence of chorioamnionitis. Placenta. 2011;32(5):380-385. doi: 10.1016/j.placenta.2011.02.003

16. Lampiasi N. Macrophage polarization: learning to manage it 2.0. Int J Mol Sci. 2023;24(24):17409. doi: 10.3390/ijms242417409

17. Lee J.T., Pamir N., Liu N.C., Kirk E.A., Averill M.M., Becker L., Larson I., Hagman D.K., Foster-Schubert K.E., van Yserloo B., Bornfeldt K.E., LeBoeuf R.C., Kratz M., Heinecke J.W. Macrophage metalloelastase (MMP12) regulates adipose tissue expansion, insulin sensitivity, and expression of inducible nitric oxide synthase. Endocrinology. 2014;155(9):3409-3420. doi: 10.1210/en.2014-1037

18. Li P., Ma C., Li J., You S., Dang L., Wu J., Hao Z., Li J., Zhi Y., Chen L., Sun S. Proteomic characterization of four subtypes of M2 macrophages derived from human THP-1 cells. J Zhejiang Univ Sci B. 2022;23(5):407-422. doi: 10.1631/jzus.B2100930

19. Liu J., He D., Cheng L., Huang C., Zhang Y., Rao X., Kong Y., … Jones K., Napier D., Lee E.Y., Wang C., Liu X. p300/CBP inhibition enhances the efficacy of programmed death-ligand 1 blockade treatment in prostate cancer. Oncogene. 2020;39(19):3939-3951. doi: 10.1038/s41388-020-1270-z

20. Liu J., Liu Q., Zhang X., Cui M., Li T., Zhang Y., Liao Q. Immune subtyping for pancreatic cancer with implication in clinical outcomes and improving immunotherapy. Cancer Cell Int. 2021;21(1):137. doi: 10.1186/s12935-021-01824-z

21. Maiuri L., Luciani A., Giardino I., Raia V., Villella V.R., D’Apolito M., Pettoello-Mantovani M., Guido S., Ciacci C., Cimmino M., Cexus O.N., Londei M., Quarantino S. Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol. 2008;180(11):7697-7705. doi: 10.4049/jimmunol.180.11.7697

22. Martinez F.O., Gordon S., Locati M., Mantovani A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol. 2006;177(10):7303-7311. doi: 10.4049/jimmunol.177.10.7303

23. Martinez F.O., Sica A., Mantovani A., Locati M. Macrophage activation and polarization. Front Biosci. 2008;13:453-461. doi: 10.2741/2692

24. Mills C.D. M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol. 2012;32(6):463-488. doi: 10.1615/critrevimmunol.v32.i6.10

25. Mosser D.M., Hamidzadeh K., Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol. 2021;18(3):579-587. doi: 10.1038/s41423-020-00541-3

26. Murray P.J., Allen J.E., Biswas S.K., Fisher E.A., Gilroy D.W., Goerdt S., Gordon S., … Suttles J., Udalova I., van Ginderachter J.A., Vogel S.N., Wynn T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1): 14-20. doi: 10.1016/j.immuni.2014.06.008

27. Oates T.C., Moura P.L., Cross S., Roberts K., Baum H.E., Haydn-Smith K.L., Wilson M.C., Heesom K.J., Severn C.E., Toye A.M. Defining the proteomic landscape of cultured macrophages and their polarization continuum. Immunol Cell Biol. 2023;101(10):947-963. doi: 10.1111/imcb.12687

28. Sun W., Qin Y., Wang Z., Dong W., He L., Zhang T., Zhang H. The NEAT1_2/miR-491 axis modulates papillary thyroid cancer invasion and metastasis through TGM2/NFκb/FN1 signaling. Front Oncol. 2021;11:610547. doi: 10.3389/fonc.2021.610547

29. van der Lans A.A., Boon M.R., Haks M.C., Quinten E., Schaart G., Ottenhoff T.H., van Marken Lichtenbelt W.D. Cold acclimation affects immune composition in skeletal muscle of healthy lean subjects. Physiol Rep. 2015;3(7):e12394. doi: 10.14814/phy2.12394

30. Wynn T.A., Vannella K.M. Macrophages in tissue repair, regeneration, and fibrosis. Immunity. 2016;44(3):450-462. doi: 10.1016/j.immuni.2016.02.015

31. Xu W., Zhao X., Daha M.R., van Kooten C. Reversible differentiation of pro- and anti-inflammatory macrophages. Mol Immunol. 2013; 53(3):179-86. doi: 10.1016/j.molimm.2012.07.005

32. Yuan R., Li S., Geng H., Wang X., Guan Q., Li X., Ren C., Yuan X. Reversing the polarization of tumor-associated macrophages inhibits tumor metastasis. Int Immunopharmacol. 2017;49:30-37. doi: 10.1016/j.intimp.2017.05.014

33. Zhang M., Wang C.C. Inflammatory response of macrophages in infection. Hepatobiliary Pancreat Dis Int. 2014;13(2):138-152. doi: 10.1016/s1499-3872(14)60024-2

34. Zhang M., He Y., Sun X., Li Q., Wang W., Zhao A., Di W. A high M1/ M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014; 7:19. doi: 10.1186/1757-2215-7-19

35. Zhang Q., Sioud M. Tumor-associated macrophage subsets: shaping polarization and targeting. Int J Mol Sci. 2023;24:7493. doi: 10.3390/ijms24087493

36. Zolotareva O., Saik O.V., Königs C., Bragina E.Y., Goncharova I.A., Freidin M.B., Dosenko V.E., Ivanisenko V.A., Hofestädt R. Comorbidity of asthma and hypertension may be mediated by shared genetic dysregulation and drug side effects. Sci Rep. 2019;9(1):16302. doi: 10.1038/s41598-019-52762-w


Рецензия

Просмотров: 47


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)