Structural basis of the phosphoramidate N-benzimidazole group’s influence on modified primer extension efficiency by Taq DNA polymerase
https://doi.org/10.18699/vjgb-25-112
Abstract
We recently proposed a novel class of nucleic acid derivatives – phosphoramidate benzoazole oligonucleotides (PABAOs). In these compounds, one of the nonbridging oxygen atoms is replaced by a phosphoramidate N-benzoazole group, such as benzimidazole, dimethylbenzimidazole, benzoxazole, or benzothiazole. Studies of the properties of these derivatives have shown that their use in PCR enhances the specificity and selectivity of the analysis. The study investigates the effect of phosphoramide N-benzimidazole modification of DNA primers on their elongation by Taq DNA polymerase using molecular dynamics simulations. We examined perfectly matched primertemplate complexes with modifications at positions one through six from the 3’end of the primer. Prior experimental work demonstrated that the degree of elongation suppression depends on the modification position: the closer to the 3’end, the stronger the inhibition, with maximal suppression observed for the first position, especially in mismatched complexes. Furthermore, incomplete elongation products were experimentally observed for primers modified at the fourth position. Our molecular dynamics simulations and subsequent analysis revealed the molecular mechanisms underlying the interaction of modified primers with the enzyme. These include steric hindrance that impedes polymerase progression along the modified strand and local distortions in the DNA structure, which explain the experimentally observed trends. We established that both different stereoisomers of the phosphoramidate groups and conformers of the phosphoramidate N-benzimidazole moiety differentially affect the structure of the enzymesubstrate complex and the efficiency of Taq DNA polymerase interaction with the modified DNA complex. Modification of the first and second in ternucleoside phosphate from the 3’end of the primer causes the most significant perturbation to the structure of the proteinnucleic acid complex. When the modification is located at the fourth phosphate group, the Nbenzimidazole moiety occupies a specific pocket of the enzyme. These findings provide a foundation for the rational design of specific
DNA primers bearing modified N-benzimidazole moieties with tailored properties for use in PCR diagnostics.
Keywords
About the Authors
A. A. BerduginRussian Federation
Novosibirsk
V. M. Golyshev
Russian Federation
Novosibirsk
A. A. Lomzov
Russian Federation
Novosibirsk
References
1. Abramson J., Adler J., Dunger J., Evans R., Green T., Pritzel A., Ronneberger O., … Bapst V., Kohli P., Jaderberg M., Hassabis D., Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493-500. doi: 10.1038/s41586-024-07487-w
2. Case D.A., Belfon K., Ben-Shalom I.Y., Brozell S.R., Cerutti D.S., Cheatham T.E. III, Cruzeiro V.W.D., … Wu X., Xiong Y., Xue Y., York D.M., Kollman P.A. Amber 20. San Francisco, Univ. of California, 2020. Available at: https://ambermd.org/doc12/Amber20.pdf
3. Chubarov A.S., Oscorbin I.P., Filipenko M.L., Lomzov A.A., Pyshnyi D.V. Allele-specific PCR for KRAS mutation detection using phosphoryl guanidine modified primers. Diagnostics. 2020;10(11): 872. doi: 10.3390/diagnostics10110872
4. Chubarov A.S., Oscorbin I.P., Novikova L.M., Filipenko M.L., Lomzov A.A., Pyshnyi D.V. Allele-specific PCR for PIK3CA mutation detection using phosphoryl guanidine modified pri mers. Diagnostics. 2023;13(2):250. doi: 10.3390/diagnostics13020250/S1
5. Chubarov A.S., Baranovskaya E.E., Oscorbin I.P., Yushin I.I., Filipenko M.L., Pyshnyi D.V., Vasilyeva S.V., Lomzov A.A. Phosphoramidate azole oligonucleotides for single nucleotide polymorphism detection by PCR. Int J Mol Sci. 2024;25(1):617. doi: 10.3390/ijms25010617
6. Di Giusto D., King G.C. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays. Nucleic Acids Res. 2003;31(3):e7. doi: 10.1093/nar/gng007
7. Eom S.H., Wang J., Steitz T.A. Structure of Taq polymerase with DNA at the polymerase active site. Nature. 1996;382(6588):278-281. doi: 10.1038/382278A0
8. Golyshev V.M., Yushin I.I., Gulyaeva O.A., Baranovskaya E.E., Lomzov A.A. Properties of phosphoramide benzoazole oligonucleotides (PABAOs). I. Structure and hybridization efficiency of N-benzimidazole derivatives. Biochem Biophys Res Commun. 2024;693: 149390. doi: 10.1016/j.bbrc.2023.149390
9. Golyshev V.M., Morozova F.V., Berdugin A.A., Kozyreva E.A., Baranovskaya E.E., Yushin I.I., Lomzov A.A. Structural and thermodynamic insights for enhanced SNP detection using N-benzimida zole oligonucleotides. J Phys Chem B. 2025;129(44):11409-11420. doi: 10.1021/acs.jpcb.5c04047
10. Ishige T., Itoga S., Matsushita K. Locked nucleic acid technology for highly sensitive detection of somatic mutations in cancer. Adv Clin Chem. 2018;83:53-72. doi: 10.1016/bs.acc.2017.10.002
11. Izadi S., Anandakrishnan R., Onufriev A.V. Building water models: a different approach. J Phys Chem Lett. 2014;5(21):3863-3871. doi: 10.1021/jz501780a
12. Kalendar R., Baidyussen A., Serikbay D., Zotova L., Khassanova G., Kuzbakova M., Jatayev S., Hu Y.G., Schramm C., Anderson P.A., Jenkins C.L.D., Soole K.L., Shavrukov Y. Modified “Allele-specific qPCR” method for SNP genotyping based on FRET. Front Plant Sci. 2022;12:747886. doi: 10.3389/fpls.2021.747886
13. Kutyavin I.V. Use of base modifications in primers and amplicons to improve nucleic acids detection in the real-time snake polymerase chain reaction. Assay Drug Dev Technol. 2011;9(1):58-68. doi: 10.1089/adt.2010.0303
14. Li Y., Korolev S., Waksman G. Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation. EMBO J. 1998;17(24):7514-7525. doi: 10.1093/emboj/17.24.7514
15. Li Z., Song L.F., Li P., Merz K.M. Systematic parametrization of divalent metal ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB water models. J Chem Theory Comput. 2020;16(7):4429-4442. doi: 10.1021/acs.jctc.0c00194
16. Meagher K.L., Redman L.T., Carlson H.A. Development of polyphosphate parameters for use with the AMBER force field. J Comput Chem. 2003;24(9):1016-1025. doi: 10.1002/jcc.10262
17. Nonin S., Leroy J.L., Guéron M. Terminal base pairs of oligodeoxynucleotides: imino proton exchange and fraying. Biochemistry. 1995; 34(33):10652-10659. doi: 10.1021/bi00033a041
18. Novgorodtseva A.I., Vorob’ev A.Y., Lomzov A.A., Vasilyeva S.V. Synthesis and physicochemical properties of new phosphoramide oligodeoxyribonucleotides. I. N-caffeine derivatives. Bioorg Chem. 2025; 157:108313. doi: 10.1016/j.bioorg.2025.108313
19. Pettersen E.F., Goddard T.D., Huang C.C., Couch G.S., Greenblatt D.M., Meng E.C., Ferrin T.E. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605-1612. doi: 10.1002/jcc.20084
20. Rejali N.A., Moric E., Wittwer C.T. The effect of single mismatches on primer extension. Clin Chem. 2018;64(5):801-809. doi: 10.1373/clinchem.2017.282285
21. Roe D.R., Cheatham T.E. PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput. 2013;9(7):3084-3095. doi: 10.1021/ct400341p
22. Shapovalov M.V., Dunbrack R.L. A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure. 2011;19(6):844-858. doi: 10.1016/j.str.2011.03.019
23. Starza I.D., Eckert C., Drandi D., Cazzaniga G.; EuroMRD Consortium. Minimal residual disease analysis by monitoring immunoglobulin and T-cell receptor gene rearrangements by quantitative PCR and droplet digital PCR. Methods Mol Biol. 2022;2453:79-89. doi: 10.1007/978-1-0716-2115-8_5
24. Strahs D., Schlick T. A-tract bending: insights into experimental structures by computational models. J Mol Biol. 2000;301(3):643-663. doi: 10.1006/jmbi.2000.3863
25. Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2013;97(24):10243-10254. doi: 10.1007/s00253-013-5290-2
26. Tian C., Kasavajhala K., Belfon K.A.A., Raguette L., Huang H., Migues A.N., Bickel J., Wang Y., Pincay J., Wu Q., Simmerling C. ff19SB: amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. J Chem Theory Comput. 2020;16(1):528-552. doi: 10.1021/acs.jctc.9b00591
27. Unni S., Huang Y., Hanson R.M., Tobias M., Krishnan S., Li W.W., Nielsen J.E., Baker N.A. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J Comput Chem. 2011; 32(7):1488-1491. doi: 10.1002/jcc.21720
28. Vasilyeva S.V., Baranovskaya E.E., Dyudeeva E.S., Lomzov A.A., Pyshnyi D.V. Synthesis of oligonucleotides carrying inter-nucleotide N-(benzoazole)-phosphoramide moieties. ACS Omega. 2023; 8(1):1556-1566. doi: 10.1021/acsomega.2c07083
29. Vinogradova O.A., Pyshnyi D.V. Selectivity of enzymatic conversion of oligonucleotide probes during nucleotide polymorphism analysis of DNA. Acta Naturae. 2010;2(1):40-58. doi: 10.32607/20758251-2010-2-1-36-52
30. Yushin I.I., Golyshev V.M., Novgorodtseva A.I., Lomzov A.A. Properties of phosphoramide benzoazole oligonucleotides (PABAOs). II. Structure and hybridization efficiency of N-benzoxazole derivatives. Biochem Biophys Res Commun. 2024;740:150997. doi: 10.1016/j.bbrc.2024.150997
31. Zgarbová M., Otyepka M., Šponer J., Lankaš F., Jurečka P. Base pair fraying in molecular dynamics simulations of DNA and RNA. J Chem Theory Comput. 2014;10(8):3177-3189. doi: 10.1021/ct500120v
32. Zgarbová M., Šponer J., Jurečka P. Z-DNA as a touchstone for additive empirical force fields and a refinement of the Alpha/Gamma DNA torsions for AMBER. J Chem Theory Comput. 2021;17(10):6292-6301. doi 10.1021/acs.jctc.1C00697






