Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Senescent cell accumulation is associated with T-cell imbalance in the skin

https://doi.org/10.18699/vjgb-25-118

Abstract

   Organismal aging is accompanied by the accumulation of senescent cells – damaged, non-functional cells that exhibit cell cycle arrest, resistance to apoptosis, metabolic dysfunction, and production of a wide range of pro-inflammatory substances. The age-related accumulation of these cells is associated with impaired tissue function, contributes to chronic inflammation (inflammaging), and promotes the development of various age-associated diseases. Conversely, the elimination of senescent cells restores tissue functions and positively affects overall metabolism. Under normal conditions, senescent cells are removed by the innate immune system; however, the efficiency of this process declines with age. The involvement of adaptive immunity and the role of T cells in the clearance of senescent cells remain poorly understood.

   The aim of this study was to identify alterations in local T cell immunity associated with the accumulation of senescent cells in human skin.

   The analysis was performed on publicly available single-cell RNA-sequencing data from skin biopsies, and the senescent status was assessed using the SenePy algorithm with Gaussian mixture models. It was found that the emergence of senescent cells occurs heterogeneously across cell types within the tissue. The accumulation of these cells is associated with alterations in the CD4+ to CD8+ T cell ratio, as well as with an increased abundance of regulatory T cells. Functional analysis revealed that these quantitative age-related shifts were accompanied by more pronounced activation of regulatory T cells together with features of anergy and exhaustion in CD8+ T cells, whereas functional changes in CD4+ T cells were heterogeneous. These findings underscore the importance of adaptive immunity in maintaining tissue homeostasis and suggest potential age-related dysfunction of tissue-resident T cells. Understanding the mechanisms underlying the interaction between adaptive immunity and senescent cells is crucial for the development of senolytic vaccines and other immunological approaches aimed at enhancing endogenous elimination of senescent cells.

About the Authors

K. S. Matveeva
Sirius University of Science and Technology
Россия

Krasnodar region; Sirius Federal Territory



S. K. Kolmykov
Sirius University of Science and Technology
Россия

Krasnodar region; Sirius Federal Territory



T. S. Sokolova
Sirius University of Science and Technology
Россия

Krasnodar region; Sirius Federal Territory



D. R. Salimov
Sirius University of Science and Technology
Россия

Krasnodar region; Sirius Federal Territory



D. V. Shevyrev
Sirius University of Science and Technology
Россия

Krasnodar region; Sirius Federal Territory



References

1. Antonangeli F., Zingoni A., Santoni A., Soriani A. Senescent cells: living or dying is a matter of NK cells. J Leukoc Biol. 2019;105(6): 1275-1283. doi: 10.1002/jlb.mr0718-299r

2. Arora S., Thompson P.J., Wang Y., Bhattacharyya A., Apostolopoulou H., Hatano R., Naikawadi R.P., Shah A., Wolters P.J., Koliwad S., Bhattacharya M., Bhushan A. Invariant natural killer T cells coordinate removal of senescent cells. Med. 2021;2(8):938-950. doi: 10.1016/j.medj.2021.04.014

3. Childs B.G., Durik M., Baker D.J., van Deursen J.M. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21(12):1424-1435. doi: 10.1038/nm.4000

4. Cohn R.L., Gasek N.S., Kuchel G.A., Xu M. The heterogeneity of cellular senescence: insights at the single-cell level. Trends Cell Biol. 2023;33(1):9-17. doi: 10.1016/j.tcb.2022.04.011

5. Di Micco R., Krizhanovsky V., Baker D., d’Adda di Fagagna F. Cellular senescence in ageing: from mechanisms to therapeutic opportunities. Nat Rev Mol Cell Biol. 2021;22(2):75-95. doi: 10.1038/s41580-020-00314-w

6. Domínguez Conde C., Xu C., Jarvis L.B., Rainbow D.B., Wells S.B., Gomes T., Howlett S.K., … Sims P.A., Farber D.L., Saeb-Parsy K., Jones J.L., Teichmann S.A. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science. 2022;376(6594): eabl5197. doi: 10.1126/science.abl5197

7. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14(10):576-590. doi: 10.1038/s41574-018-0059-4

8. Ge M.X., Yu Q., Li G.H., Yang L.Q., He Y., Li J., Kong Q.P. Multiple time-series expression trajectories imply dynamic functional changes during cellular senescence. Comput Struct Biotechnol J. 2022;20:4131-4137. doi: 10.1016/j.csbj.2022.08.005

9. Hense J.D., Isola J.V.V., Garcia D.N., Magalhães L.S., Masternak M.M., Stout M.B., Schneider A. The role of cellular senescence in ovarian aging. NPJ Aging. 2024;10(1):35. doi: 10.1038/s41514-024-00157-1

10. Kim S., Kim C. Transcriptomic analysis of cellular senescence: one step closer to senescence atlas. Mol Cells. 2021;44(3):136-145. doi: 10.14348/molcells.2021.2239

11. Korsunsky I., Millard N., Fan J., Slowikowski K., Zhang F., Wei K., Baglaenko Y., Brenner M., Loh P.R., Raychaudhuri S. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16(12):1289-1296. doi: 10.1038/s41592-019-0619-0

12. Li J., Xiao C., Li C., He J. Tissue-resident immune cells: from defining characteristics to roles in diseases. Signal Transduct Target Ther. 2025;10(1):12. doi: 10.1038/s41392-024-02050-5

13. Liao Z., Yeo H.L., Wong S.W., Zhao Y. Cellular senescence: mechanisms and therapeutic potential. Biomedicines. 2021;9(12):1769. doi: 10.3390/biomedicines9121769

14. Lorenzo E.C., Torrance B.L., Keilich S.R., Al-Naggar I., Harrison A., Xu M., Bartley J.M., Haynes L. Senescence-induced changes in CD4 T cell differentiation can be alleviated by treatment with senolytics. Aging Cell. 2022;21(1):e13525. doi: 10.1111/acel.13525

15. Matveeva K., Vasilieva M., Minskaia E., Rybtsov S., Shevyrev D. T-cell immunity against senescence: potential role and perspectives. Front Immunol. 2024;15:1360109. doi: 10.3389/fimmu.2024.1360109

16. Regulski M.J. Cellular senescence: what, why, and how. Wounds. 2017; 29(6):168-174

17. Reynolds G., Vegh P., Fletcher J., Poyner E.F.M., Stephenson E., Goh I., Botting R.A., … Rajan N., Reynolds N.J., Teichmann S.A., Watt F.M., Haniffa M. Developmental cell programs are co-opted in inflammatory skin disease. Science. 2021;371(6527):eaba6500. doi: 10.1126/science.aba6500

18. Sanborn M.A., Wang X., Gao S., Dai Y., Rehman J. Unveiling the cell-type-specific landscape of cellular senescence through single-cell transcriptomics using SenePy. Nat Commun. 2025;16:1884. doi: 10.1038/s41467-025-57047-7

19. Shin S.H., Lee Y.H., Rho N.K., Park K.Y. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol. 2023; 14:1195272. doi: 10.3389/fphys.2023.1195272

20. Song P., An J., Zou M.-H. Immune clearance of senescent cells to combat ageing and chronic diseases. Cells. 2020;9(3):671. doi: 10.3390/cells9030671

21. Song S., Kirkland J.L., Sun Y., Tchkonia T., Jiang J. Targeting senescent cells for a healthier aging: challenges and opportunities. Adv Sci. 2020;7(23):2002611. doi: 10.1002/advs.202002611

22. Subramanian A., Tamayo P., Mootha V.K., Mukherjee S., Ebert B.L., Gillette M.A., Paulovich A., Pomeroy S.L., Golub T.R., Lander E.S., Mesirov J.P. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA. 2005;102(43):15545-15550. doi: 10.1073/pnas.0506580102

23. Witham M.D., Granic A., Miwa S., Passos J.F., Richardson G.D., Sayer A.A. New Horizons in cellular senescence for clinicians. Age Ageing. 2023;52(7):afad127. doi: 10.1093/ageing/afad127

24. Wolf F.A., Angerer P., Theis F.J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19(1):15. doi: 10.1186/s13059-017-1382-0

25. Wolock S.L., Lopez R., Klein A.M. Scrublet: computational identification of cell doublets in single-cell transcriptomic data. Cell Syst. 2019;8(4):281-291.e9. doi: 10.1016/j.cels.2018.11.005

26. Yang D., Sun B., Li S., Wei W., Liu X., Cui X., Zhang X., Liu N., Yan L., Deng Y., Zhao X. NKG2D-CAR T cells eliminate senescent cells in aged mice and nonhuman primates. Sci Transl Med. 2023;15(709):eadd1951. doi: 10.1126/scitranslmed.add1951

27. Yousefzadeh M.J., Melos K.I., Angelini L., Burd C.E., Robbins P.D., Niedernhofer L.J. Mouse models of accelerated cellular senescence. In: Demaria M. (Ed.) Cellular Senescence. Methods in Molecular Biology. Vol. 1896. New York: Humana Press, 2019;203-230. doi: 10.1007/978-1-4939-8931-7_17

28. Yu G., Wang L.G., Han Y., He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS. 2012; 16(5):284-287. doi: 10.1089/omi.2011.0118

29. Zhang W., Zhang K., Shi J., Qiu H., Kan C., Ma Y., Hou N., Han F., Sun X. The impact of the senescent microenvironment on tumorigenesis: insights for cancer therapy. Aging Cell. 2024;23(5):e14182. doi: 10.1111/acel.14182

30. Zhang X., Zhang R., Yu J. New understanding of the relevant role of LINE-1 retrotransposition in human disease and immune modulation. Front Cell Dev Biol. 2020;8:657. doi: 10.3389/fcell.2020.00657

31. Zhang X., Ng Y.E., Chini L.C.S., Heeren A.A., White T.A., Li H., Huang H., Doolittle M.L., Khosla S., LeBrasseur N.K. Senescent skeletal muscle fibroadipogenic progenitors recruit and promote M2 polarization of macrophages. Aging Cell. 2024;23(3):e14069. doi: 10.1111/acel.14069


Review

Views: 317

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)