Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Effect of the biopesticide Novoсhizol on the expression of defense genes during wheat infection with stem rust Puccinia graminis f. sp. tritici

https://doi.org/10.18699/vjgb-25-127

Abstract

Stem rust, caused by the fungus Puccinia graminis f. sp. tritici (Pgt), is a harmful disease affecting grain crops. The traditional way to combat this and other infectious plant diseases is to use chemical pesticides. Biopesticides, as well as plant disease resistance inducers – in particular those based on chitosan, a derivative of chitin – are increasingly being considered as an effective and safe alternative. Recently, a globular form of chitosan, Novochizol, has been developed, which has a number of advantages and has shown its effectiveness in preliminary field and laboratory experiments. However, there are no works devoted to the effect of this preparation on the expression of defense genes. Therefore, the aim of this work was to search for genes involved in the response of common wheat (Triticum aestivum L.) to stem rust infection and to evaluate the effect of Novochizol treatment on their transcription during the infection process. The wheat line ISr6-Ra with the stem rust resistance gene Sr6 and two Pgt isolates – an avirulent one, Avr6, and a virulent one, vr6 – were used as a model, allowing us to compare the effects of Novochizol depending on the genetic compatibility in the plant−pathogen pathosystem. To analyze the transcription level of defense genes, leaf material was collected at different time points from 3 to 144 h after inoculation of plants with the pathogen. Quantitative PCR analysis showed an increase in the transcription levels of the CERK1, PR3, PR4, PR5, PR6 and PR9 genes in plants treated with Novochizol and infected with various Pgt isolates compared to untreated infected plants. Pgt isolate Avr6 induced the highest expression of some defense genes (primarily CERK1), which is consistent with the phytopathology data showing the maximum degree of resistance (IT1) to stem rust in Novochizol-treated plants with a combination of Sr6–Avr6 genes. The data obtained confirm that one of the optimal strategies for increasing the resistance of grain crops to fungal pathogens is a combination of selection for specific resistance genes with the use of biological control agents.

About the Authors

A. B. Shcherban
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



A. V. Razuvaeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



E. S. Skolotneva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



V. V. Fomenko
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

Novosibirsk



References

1. Ali S., Ahmad N., Dar M.A., Manan S., Rani A., Alghanem S.M.S., Khan K.A., Sethupathy S., Elboughdiri N., Mostafa Y.S., Alam ri S.A., Hashem M., Shahid M., Zhu D. Nano-agrochemicals as substitutes for pesticides: prospects and risks. Plants (Basel). 2023; 13(1):109. doi 10.3390/plants13010109

2. Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Ros Bar celó A., Pedreño M.A. Class III peroxidases in plant defence reac tions. J Exp Bot. 2009;60(2):377-390. doi 10.1093/jxb/ern277

3. Andreeva V.A. The Enzyme Peroxidase: Participation in the Protective Mechanism of Plants. Moscow: Nauka Publ., 1988 (in Russian)

4. Bent A.F., Mackey D. Elicitors, effectors, and R genes: the new para digm and a lifetime supply of questions. Annu Rev Phytopathol. 2007;45:399-436. doi 10.1146/annurev.phyto.45.062806.094427

5. Bertini L., Leonardi L., Caporale C., Tucci M., Cascone N., Di Be rardino I., Buonocore V., Caruso C. Pathogen-responsive wheat PR4 genes are induced by activators of systemic acquired resistance and wounding. Plant Sci. 2003;164(6):1067-1078. doi 10.1016/S01689452(03)00112-2

6. Bigeard J., Colcombet J., Hirt H. Signaling mechanisms in pattern trig gered immunity (PTI). Mol Plant. 2015;8(4):521-539. doi 10.1016/j.molp.2014.12.022

7. Chai Y., Senay S., Horvath D., Pardey P. Multi-peril pathogen risks to global wheat production: a probabilistic loss and investment assessment. Front Plant Sci. 2022;13:1034600. doi 10.3389/fpls.2022.1034600

8. Conrath U. Molecular aspects of defence priming. Trends Plant Sci. 2011;16(10):524-531. doi 10.1016/j.tplants.2011.06.004

9. Cui Z., Liang F., Zhang J., Wang F., Liu D., Wang H. Transgenic ex pression of TaTLP1, a thaumatin-like protein gene, reduces suscepti bility to common root rot and leaf rust in wheat. Crop J. 2021;9(5): 1214-1218. doi 10.1016/j.cj.2021.03.021

10. Desmond O.J., Edgar C.I., Manners J.M., Maclean D.J., Schenk P.M., Kazan K. Methyl jasmonate induced gene expression in wheat de lays symptom development by the crown rot pathogen Fusarium pseudograminearum. Physiol Mol Plant Pathol. 2005;67(3-5):171 179. doi 10.1016/j.pmpp.2005.12.007

11. Ding Y., Sun T., Ao K., Peng Y., Zhang Y., Li X., Zhang Y. Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in tran scriptional regulation of plant immunity. Cell. 2018;173(6):1454- 1467.e15. doi 10.1016/j.cell.2018.03.044

12. Elsharkawy M.M., Omara R.I., Mostafa Y.S., Alamri S.A., Hashem M., Alrumman S.A., Ahmad A.A. Mechanism of wheat leaf rust con trol using chitosan nanoparticles and salicylic acid. J Fungi (Basel). 2022;8(3):304. doi 10.3390/jof8030304

13. Fomenko V., Loroch V. Novochizol: a new type of cross-linked chitosan particles for formulation and parsimonious delivery of copper com pounds. In: 6th European Copper Conference in Plant Protection, Berlin, Germany, 17–18 November 2021. Berlin: IFOAM Organics Europe, 2021. Available online: https://www.boelw.de/fileadmin/user_upload/Dokumente/Veranstaltungen/Kupfertagung_2021/copper_novochizol.pdf

14. Gao C., Kou X., Li H., Zhang J., Saad A., Liao Y. Inverse effects of Arabidopsis NPR1 gene on fusarium seedling blight and fusarium head blight in transgenic wheat. Plant Pathol. 2013;62(2):383-392. doi 10.1111/J.1365-3059.2012.02656.x

15. Gong B.Q., Wang F.Z., Li J.F. Hide-and-seek: chitin-triggered plant im munity and fungal counterstrategies. Trends Plant Sci. 2020;25(8): 805-816. doi 10.1016/j.tplants.2020.03.006

16. Grenier J., Potvin C., Trudel J., Asselin A. Some thaumatin-like pro teins hydrolyse polymeric β-1,3-glucans. Plant J. 1999;19(4):473 480. doi 10.1046/j.1365-313x.1999.00551.x

17. Hafeez A.N., Arora S., Ghosh S., Gilbert D., Bowden R.L., Wulff B.B.H. Creation and judicious application of a wheat resistance gene atlas. Mol Plant. 2021;14(7):1053-1070. doi 10.1016/j.molp.2021.05.014

18. Hammond-Kosack K.E., Gones J.D.G. Resistance gene dependent plant defence responses. Plant Cell. 1996;8(10):1773-1791. doi 10.1105/tpc.8.10.1773

19. Hao G., Tiley H., McCormick S. Chitin triggers tissue-specific immunity in wheat associated with Fusarium head blight. Front Plant Sci. 2022;13:832502. doi 10.3389/fpls.2022.832502

20. He R., Wu J., Zhang Y., Agüero C.B., Li X., Liu S., Wang C., Wal ker M.A., Lu J. Overexpression of a thaumatin-like protein gene from Vitis amurensis improves downy mildew resistance in Vitis vi nifera grapevine. Protoplasma. 2017;254:1579-1589. doi 10.1007/s00709-016-1047-y

21. Jones J.D.G., Dangl J.L. The plant immune system. Nature. 2006; 444(7117):323-329. doi 10.1038/nature05286

22. Katiyar D., Hemantaranjan A., Singh B., Bhanu A.N. A future perspec tive in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res. 2014;1(1):23-30. doi 10.15406/apar.2014.01.00006

23. Lee W.S., Rudd J.J., Hammond-Kosack K.E., Kanyuka K. Mycosphae rella graminicola LysM effector-mediated stealth pathogenesis sub verts recognition through both CERK1 and CEBiP homologues in wheat. Mol Plant Microbe Interact. 2014;27(3):236-243. doi 10.1094/MPMI-07-13-0201-R

24. Ma Z., Yang L., Yan H., Kennedy J.F., Meng X. Chitosan and oligochi tosan enhance the resistance of peach fruit to brown rot. Carbohydr Polym. 2013;94(1):272-277. doi 10.1016/j.carbpol.2013.01.012

25. Maluin F.N., Hussein M.Z. Chitosan-based agronanochemicals as a sustainable alternative in crop protection. Molecules. 2020;25(7): 1611. doi 10.3390/molecules25071611

26. Manjunatha G., Roopa K.S., Prashanth G.N., Shetty H.S. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag Sci. 2008;64(12):1250-1257. doi 10.1002/ps.1626

27. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat: 2011 supplement. IWGS, 2011. Available online: http://www.shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2011.pdf

28. Ngou B.P.M., Ahn H.K., Ding P., Jones J.D. Mutual potentiation of plant immunity by cell-surface and intracellular receptors. Nature. 2021;592(7852):110-115. doi 10.1038/s41586-021-03315-7

29. Orlova E.A., Bekhtold N.P., Shcherban A.B., Fomenko V.V. The effect of new biological products based on Novochizol on the condition of spring common wheat crops. Zernovoe Hozyajstvo Rossii = Grain Economy of Russia. 2025;17(2):86-93. doi 10.31367/2079-87252025-97-2-86-93 (in Russian)

30. Patpour M., Hovmøller M.S., Rodriguez-Algaba J., Randazzo B., Vil legas D., Shamanin V.P., Berlin A., … Meyer K.J.G., Valade R., Thach T., Hansen J.G., Justesen A.F. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Front Plant Sci. 2022;13:882440. doi 10.3389/fpls.2022.882440

31. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29(9):e45. doi 10.1093/nar/29.9.e45

32. Pritsch C., Muehlbauer G.J., Bushnell W.R., Somers D.A., Vance C.P. Fungal development and induction of defence response genes during early infection of wheat spikes by Fusarium graminearum. Mol Plant Microbe Interact. 2000;13(2):159-169. doi 10.1094/MPMI.2000.13.2.159

33. Ray S., Anderson J.M., Urmeev F.I., Goodwin S.B. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola. Plant Mol Biol. 2003;53(5):701-714. doi 10.1023/B:PLAN.0000019120.74610.52

34. Roelfs A.P., Singh R.P., Saari E.E. Rust diseases of wheat: concepts and methods of disease management. Mexico: CIMMYT, 1992

35. Ruijter J.M., Ramakers C., Hoogaars W.M.H., Karlen Y., Bakker O., van den Hoff M.J.B., Moorman A.F.M. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37(6):e45. doi 10.1093/nar/gkp045

36. Ryan C.A. The systemin signaling pathway: differential activation of plant defensive genes. Biochim Biophys Acta. 2000;1477(1-2):112 121. doi 10.1016/s0167-4838(99)00269-1

37. Sanin S.S. Epiphytoties of Diseases of Grain Crops: Theory and Prac tice. Moscow, 2012 (in Russian)

38. Scherer N.M., Thompson C.E., Freitas L.B., Bonatto S.L. Patterns of molecular evolution in pathogenesis-related proteins. Genet Mol Biol. 2005;28(4):645-653. doi 10.1590/S1415-47572005000500001

39. Sels J., Mathys J., De Coninck B.M., Cammue B.P., De Bolle M.F. Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol Biochem. 2008;46(11):941-950. doi 10.1016/j.plaphy.2008.06.011

40. Shcherban A.B., Skolotneva E.S., Fedyaeva A.V., Boyko N.I., Fomen ko V.V. Effect of biopesticide Novochizol on development of stem rust Puccinia graminis f. sp. tritici in wheat, T. aestivum L. Plants. 2024;13(23):3455. doi 10.3390/plants13233455

41. Shcherban A.B. Chitosan and its derivatives as promising plant protec tion tools. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023;27(8):1010-1021. doi 10.18699/VJGB-23-116

42. Shcherban A.B., Plotnikova L.Ya., Knaub V.V., Skolotneva E.S., Fo menko V.V. Cyto-physiological manifestations of protective reac tions of wheat against stem rust, induced by the biofungicide No vochizol. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2025;29(4):539-548. doi 10.18699/vjgb-25-57

43. Skolotneva E.S., Kelbin V.N., Morgunov A.I., Boyko N.I., Shamanin V.P., Salina E.A. Races composition of the Novosibirsk population of Puccinia graminis f. sp. tritici. Mykologiya i Fitopatologiya = Mycology and Phytopathology. 2020;54(1):49-58. doi 10.31857/S0026364820010092 (in Russian)

44. Tada Y., Spoel S.H., Pajerowska-Mukhtar K., Mou Z., Song J., Wang C., Zuo J., Dong X. Plant immunity requires conformational changes [corrected] of NPR1 via S-nitrosylation and thioredoxins. Science. 2008;321(5891):952-956. doi 10.1126/science.1156970

45. Tarchevskij I.A. Signal systems of plant’s cells. Moscow: Nauka Publ., 2002 (in Russian)

46. Teplyakova O.I., Fomenko V.V., Salakhutdinov N.F., Vlasenko N.G. Novochizol™ seed treatment: effects on germination, growth and development in soft spring wheat. Nat Prod Chem Res. 2022; 10(5):1-4. doi 10.35248/naturalproducts.10.5.1-04

47. Tsilo T.J., Chao S., Jin Y., Anderson J.A. Identification and validation of SSR markers linked to the stem rust resistance gene Sr6 on the short arm of chromosome 2D in wheat. Theor Appl Genet. 2009; 118(3):515-524. doi 10.1007/s00122-008-0917-x

48. Van der Bulcke C., Bauw G., De Rucke R., Castresana C. The role of vacuolar and secreted pathogenesis-related B (1-3)-gluconases and chitinases in the defense response of plants. Bull Soc Bot Fr. 1990;137(3-4):51-63. doi 10.1080/01811789.1990.10827029

49. Van Loon L.C., Van Strien E.A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol Mol Plant Pathol. 1999;55(2):85-97. doi 10.1006/pmpp.1999.0213

50. Van Loon L.C., Rep M., Pieterse C.M.J. Significance of induc ible defense-related proteins in infected plants. Annu Rev Phyto pathol. 2006;44:135-162. doi 10.1146/annurev.phyto.44.070505.143425

51. Varlamov V.P., Ilyina A.V., Shagdarova B.Ts., Lunkov A.P., Mysyakina I.S. Chitin/chitosan and its derivatives: fundamental problems and practical approaches. Biochemistry. 2020;85:154-176. doi 10.1134/s0006297920140084

52. Wang L., He Y., Guo G., Xia X., Dong Y., Zhang Y., Wang Y., Fan X., Wu L., Zhou X., Zhang Z., Li G. Overexpression of plant chi tin receptors in wheat confers broad-spectrum resistance to fun gal diseases. Plant J. 2024;120(3):1047-1063. doi 10.1111/tpj.17035

53. Wang X., Tang C., Deng L., Cai G., Liu X., Liu B., Han Q., Buche nauer H., Wei G., Han D., Huang L., Kang Z. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol Plant. 2010;139(1):27-38. doi 10.1111/j.1399-3054.2009.01338.x

54. Ward E.R., Uknes S.J., Williams S.C., Dincher S.S., Wiederhold D.L., Alexander D.C., Ahl-Goy P., Metraux J.P., Ryalset J.A. Coordi nate gene activity in response to agents that induce systemic ac quired resistance. Plant Cell. 1991;3(10):1085-1094. doi 10.1105/tpc.3.10.1085


Review

Views: 46

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)