Identification of CtE1 gene nucleotide polymorphisms and development of SNP-based KASP markers in guar (Cyamopsis tetragonoloba (L.) Taub.)
https://doi.org/10.18699/vjgb-25-134
Abstract
Guar (Cyamopsis tetragonoloba (L.) Taub), is an important short-day legume crop, whose cultivation is limited at high latitudes due its photoperiod sensitivity, that negatively impacts flowering and maturation of this industrial oriented crop. In its close relative, soybean, the E1 gene has been highly associated with the regulation of flowering time under long-day conditions. In this study we investigated the natural diversity of the E1 homologue gene (CtE1) in a panel of 144 guar accessions. For this purpose, the CtE1 gene was amplified and sequenced using Illumina. As a result, five novel SNPs were identified in the 5’-untranslated region, coding region, and 3’-untranslated region of the CtE1 gene. One non-synonymous SNP was located in the coding region causing a conservative Arg→Lys substitution. Based on the identified SNP, five KASP markers linked to polymorphism in the target gene were developed and tested in the guar collection. No significant associations were detected between discovered SNPs and available data on variability in flowering time or vegetation period length in the cohort of 144 accessions. These findings suggest that natural variation of the CtE1 gene in the studied germplasm collection has minimal effect on flowering or maturation. The limited functional allelic diversity observed in the CtE1 gene of guar compared to the E1 gene in soybean likely reflects differences in their evolutionary histories, domestication bottlenecks, and selection pressures.
About the Authors
L. Criollo DelgadoRussian Federation
Moscow
D. Zewude
Russian Federation
Moscow
D. S. Karzhaev
Russian Federation
St. Petersburg
D. E. Polev
Russian Federation
St. Petersburg
E. K. Potokina
Russian Federation
Moscow
References
1. Andrews S. FastQC. A Quality control tool for high throughput se quence data. Babraham bioinformatics, 2010. Available: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
2. Banayan N.E., Loughlin B.J., Singh S., Forouhar F., Lu G., Wong K., Neky M., Hunt H.S., Bateman L.B., Tamez A., Handelman S.K., Price W.N., Hunt J.F. Systematic enhancement of protein crystalliza tion efficiency by bulk lysine‐to‐arginine (KR) substitution. Protein Sci. 2024;33(3):e4898. doi 10.1002/pro.4898
3. Benakanahalli N.K., Sridhara S., Ramesh N., Olivoto T., Sreekan tappa G., Tamam N., Abdelbacki A.M.M., Elansary H.O., Abdel mohsen S.A.M. A framework for identification of stable genotypes basedon MTSI and MGDII indexes: An example in guar (Cymop sis tetragonoloba L.). Agronomy. 2021;11(6):1221. doi 10.3390/agronomy11061221
4. Betts M.J., Russell R.B. Amino acid properties and consequences of substitutions. In: Barnes M.R., Gray I.C. (Eds.) Bioinformatics for geneticists. John Wiley & Sons. 2003;289-316. doi 10.1002/0470867302.ch14
5. Campbell N.R., Harmon S.A., Narum S.R. Genotyping‐in‐Thousands by sequencing (GT‐seq): A cost effective SNP genotyping method based on custom amplicon sequencing. Mol Ecol Resour. 2015; 15(4):855-867. doi 10.1111/1755-0998.12357
6. Cao D., Takeshima R., Zhao C., Liu B., Jun A., Kong F. Molecular mechanisms of flowering under long days and stem growth habit in soybean. J Exp Bot. 2017;68(8):1873-1884. doi 10.1093/jxb/erw394
7. Choyal P., Dewangan R., Nd R., Xaxa S., Seervi K.S., Seervi D. Gene tic variability studies in cluster bean [Cyamopsis tetragonoloba (L.) Taub]. Pharma Innovation J. 2022;11(2):2364-2368
8. Criollo Delgado L., Zamalutdinov A., Potokina E. Identification of soybean E1-E4 gene orthologs in the guar genome using compre hensive transcriptome assembly and annotation. Front Biosci. 2025; 17(2):26548. doi 10.31083/fbs26548
9. Danecek P., Bonfield J.K., Liddle J., Marshall J., Ohan V., Pol lard M.O., Whitwham A., Keane T., McCarthy S.A., Davies R.M., Li H. Twelve years of SAMtools and BCFtools. GigaScience. 2021; 10(2):giab008. doi 10.1093/gigascience/giab008
10. de Mendiburu F. Agricolae: Statistical Procedures for Agricultural Re search (Version 1.3-7). Computer software. 2023. Available: https://cran.r-project.org/web/packages/agricolae/index.html
11. den Dunnen J.T., Dalgleish R., Maglott D.R., Hart R.K., Green blatt M.S., McGowan-Jordan J., Roux A.-F., Smith T., Antonara- kis S.E., Taschner P.E.M. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37(6): 564-569. doi 10.1002/humu.22981
12. Desjardins P., Conklin D. NanoDrop Microvolume quantitation of nucleic acids. J Visualized Exp. 2010;45:e25651. doi 10.3791/2565
13. Fang C., Du H., Wang L., Liu B., Kong F. Mechanisms underlying key agronomic traits and implications for molecular breeding in soybean. J Genet Genomics. 2024a;51(4):379-393. doi 10.1016/j.jgg.2023.09.004
14. Fang C., Sun Z., Li S., Su T., Wang L., Dong L., Li H., … Lin X., Zatybekov A., Liu B., Kong F., Lu S. Subfunctionalisation and selfrepression of duplicated E1 homologues finetunes soybean flower ing and adaptation. Nat Commun. 2024b;15(1):6184. doi 10.1038/s41467-024-50623-3
15. Gao Y., Zhang Y., Ma C., Chen Y., Liu C., Wang Y., Wang S., Chen X. Editing the nuclear localization signals of E1 and E1Lb enables the production of tropical soybean in temperate growing regions. Plant Biotechnol J. 2024;22(8):2145-2156. doi 10.1111/pbi.14335
16. Grigoreva E., Barbitoff Y., Changalidi A., Karzhaev D., Volkov V., Shadrina V., Safronycheva E., Ben C., Gentzbittel L., Potokina E. Development of SNP set for the marker-assisted selection of guar (Cyamopsis tetragonoloba (L.) Taub.) based on a custom refer ence genome assembly. Plants. 2021a;10(10):2063. doi 10.3390/plants10102063
17. Grigoreva E., Tkachenko A., Arkhimandritova S., Beatovic A., Ulia nich P., Volkov V., Karzhaev D., Ben C., Gentzbittel L., Potokina E. Identification of key metabolic pathways and biomarkers underly ing flowering time of guar (Cyamopsis tetragonoloba (L.) Taub.) via integrated transcriptome-metabolome analysis. Genes. 2021b; 12(7):952. doi 10.3390/genes12070952
18. Han J., Guo B., Guo Y., Zhang B., Wang X., Qiu L.-J. Creation of ear ly flowering germplasm of soybean by CRISPR/Cas9 technology. Front Plant Sci. 2019;10:1446. doi 10.3389/fpls.2019.01446
19. Hou Z., Fang C., Liu B., Yang H., Kong F. Origin, variation, and selec tion of natural alleles controlling flowering and adaptation in wild and cultivated soybean. Mol Breeding. 2023;43(5):36. doi 10.1007/s11032-023-01382-4
20. Integrated DNA Technologies. IDT (n.d.). Retrieved December 16, 2024. Available: https://www.idtdna.com/page
21. Ivanova N.V., Fazekas A.J., Hebert P.D.N. Semi-automated, mem brane-based protocol for DNA isolation from plants. Plant Mol Biol Rep. 2008;26(3):186-198. doi 10.1007/s11105-008-0029-4
22. Kalendar R., Shustov A.V., Akhmetollayev I., Kairov U. Designing allele-specific competitive-extension PCR-based assays for high throughput genotyping and gene characterization. Front Mol Biosci. 2022;9:773956. doi 10.3389/fmolb.2022.773956
23. Kennedy K., Hall M.W., Lynch M.D.J., Moreno-Hagelsieb G., Neu feld J.D. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl Environ Microbiol. 2014;80(18):5717-5722. doi 10.1128/AEM.01451-14
24. Li H. A statistical framework for SNP calling, mutation discovery, as sociation mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27(21):2987-2993. doi 10.1093/bioinformatics/btr509
25. Lin X., Liu B., Weller J.L., Abe J., Kong F. Molecular mechanisms for the photoperiodic regulation of flowering in soybean. J Integr Plant Biol. 2021;63(6):981-994. doi 10.1111/jipb.13021
26. Liu L., Song W., Wang L., Sun X., Qi Y., Wu T., Sun S., Jiang B., Wu C., Hou W., Ni Z., Han T. Allele combinations of maturity genes E1-E4 affect adaptation of soybean to diverse geographic regions and farming systems in China. PLoS One. 2020;15(7):e0235397. doi 10.1371/journal.pone.0235397
27. Potapova N.A., Zlobin A.S., Perfil’ev R.N., Vasiliev G.V., Salina E.A., Tsepilov Y.A. Population structure and genetic diversity of the 175 soybean breeding lines and varieties cultivated in West Siberia and other regions of Russia. Plants. 2023;12(19):3490. doi 10.3390/plants12193490
28. Ravelombola W., Manley A., Adams C., Trostle C., Ale S., Shi A., Ca son J. Genetic and genomic resources in guar: A review. Euphytica. 2021;217(11):199. doi 10.1007/s10681-021-02929-2 Remzeena A., Anitha P. Genetic variability, heritability and genetic ad vance in cluster bean [Cyamopsis tetragonoloba (L.) Taub.] geno types. Indian J Agric Res. 2021. doi 10.18805/IJARe.A-5779
29. Ryan B.J., Ó’Fágáin C. Arginine-to-lysine substitutions influence re combinant horseradish peroxidase stability and immobilisation ef fectiveness. BMC Biotechnology. 2007;7(1):86. doi 10.1186/14726750-7-86
30. Tsubokura Y., Watanabe S., Xia Z., Kanamori H., Yamagata H., Kaga A., Katayose Y., Abe J., Ishimoto M., Harada K. Natural varia tion in the genes responsible for maturity loci E1, E2, E3 and E4 in soybean. Ann Bot. 2014;113(3):429-441. doi 10.1093/aob/mct269
31. Verma S., Dubey N., Dhugga K.S., Gill K.S., Randhawa G.S. Cluster bean: From garnering industrial importance to molecular research interventions for the improvement of commercially viable traits. S Afr J Bot. 2025;178:307-317. doi 10.1016/j.sajb.2025.01.022
32. Wan Z., Liu Y., Guo D., Fan R., Liu Y., Xu K., Zhu J., Quan L., Lu W., Bai X., Zhai H. CRISPR/Cas9-mediated targeted mutation of the E1 decreases photoperiod sensitivity, alters stem growth habits, and decreases branch number in soybean. Front Plant Sci. 2022;13: 1066820. doi 10.3389/fpls.2022.1066820
33. Watanabe S., Harada K., Abe J. Genetic and molecular bases of pho toperiod responses of flowering in soybean. Breed Sci. 2012;61(5): 531-543. doi 10.1270/jsbbs.61.531
34. Xia Z. Research progress in whole-genome analysis and cloning of genes underlying important agronomic traits in soybean. Chin Bull Bot. 2017;52(2):148-158. doi 10.11983/CBB16087
35. Xia Z., Watanabe S., Yamada T., Tsubokura Y., Nakashima H., Zhai H., Anai T., Sato S., Yamazaki T., Lü S., Wu H., Tabata S., Harada K. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flower ing. Proc Natl Acad Sci USA. 2012;109(32):E2155-E2164. doi 10.1073/pnas.1117982109
36. Xu M., Yamagishi N., Zhao C., Takeshima R., Kasai M., Watanabe S., Kanazawa A., Yoshikawa N., Liu B., Yamada T., Abe J. The soybean-specific maturity gene E1 family of floral repressors controls night-break responses through down-regulation of FLOWERING LOCUS T orthologs. Plant Physiol. 2015;168(4):1735-1746. doi 10.1104/pp.15.00763
37. Zhai H., Lü S., Wu H., Zhang Y., Zhang X., Yang J., Wang Y., Yang G., Qiu H., Cui T., Xia Z. Diurnal expression pattern, allelic variation, and association analysis reveal functional features of the E1 gene in control of photoperiodic flowering in soybean. PLoS One. 2015; 10(8):e0135909. doi 10.1371/journal.pone.0135909
38. Zhang X., Zhai H., Wang Y., Tian X., Zhang Y., Wu H., Lü S., Yang G., Li Y., Wang L., Hu B., Bu Q., Xia Z. Functional conservation and diversification of the soybean maturity gene E1 and its homologs in legumes. Sci Rep. 2016;6(1):29548. doi 10.1038/srep29548
Review
JATS XML






