Preview

Vavilov Journal of Genetics and Breeding

Advanced search

A housekeeping gene search to analyze expression changes of individual genes in Macaca mulatta

https://doi.org/10.18699/vjgb-25-138

Abstract

Rhesus macaques (Macaca mulatta) are the most common non-human primates living in captivity. The use of rhesus macaques as model objects is determined, first of all, by their phylogenetic and physiological closeness to humans, and, as a consequence, the possibility of extrapolating the obtained results to humans. Currently, it is known that a number of biochemical changes occur under various physiological conditions, including at the transcriptomic level. The real-time polymerase chain reaction is a widely used universal method for gene expression analysis. Carrying out such studies always requires a preliminary selection of “housekeeping genes” (HKGs) – genes necessary for the implementation of basic functions in the cell and stably expressed in different cell types and under different conditions. At present, there are only two systematic studies on the search for HKGs in the rhesus macaque brain, and therefore in this work a search and systematization of HKGs for this species were carried out. As a result, two panels of promising HKGs for M. mulatta were formed: an extended panel, consisting of 56 genes, and a small panel, consisting of 8 genes: ARHGDIA, CYB5R1, NDUFA7, RRAGA, TTC1, UBA6, VPS72, and YWHAH. Both panels of potential HKGs do not have pseudogenes in macaques or humans, are characterized by stable and sufficient expression in the brain of rhesus macaques and can be used to analyze expression not only in the brain but also in peripheral blood. However, it should be noted that the data have not been experimentally verified and require verification in laboratory conditions. 

About the Authors

M. V. Shulskaya
National Research Center “Kurchatov Institute”
Russian Federation

Moscow



A. Kh. Alieva
National Research Center “Kurchatov Institute”
Russian Federation

Moscow



I. R. Kumakov
National Research Center “Kurchatov Institute”
Russian Federation

Moscow



M. I. Shadrina
National Research Center “Kurchatov Institute”
Russian Federation

Moscow



P. A. Slominsky
National Research Center “Kurchatov Institute”
Russian Federation

Moscow



References

1. Abbott D.H., Rogers J., Dumesic D.A., Levine J.E. Naturally occurring and experimentally induced rhesus macaque models for polycystic ovary syndrome: translational gateways to clinical application. Med Sci (Basel). 2019;7(12):107. doi 10.3390/medsci7120107

2. Ahn K., Huh J.W., Park S.J., Kim D.S., Ha H.S., Kim Y.J., Lee J.R., Chang K.T., Kim H.S. Selection of internal reference genes for SYBR green qRT-PCR studies of rhesus monkey (Macaca mulatta) tissues. BMC Mol Biol. 2008;9:78. doi 10.1186/1471-2199-9-78

3. Brammer D.W., Gillespie P.J., Tian M., Young D., Raveendran M., Williams L.E., Gagea M., … Pasqualini R., Arap W., Rogers J., Abee C.R., Gelovani J.G. MLH1-rheMac hereditary nonpolyposis colorectal cancer syndrome in rhesus macaques. Proc Natl Acad Sci USA. 2018;115(11):2806-2811. doi 10.1073/pnas.1722106115

4. Cai J., Li T., Huang B., Cheng H., Ding H., Dong W., Xiao M., Liu L., Wang Z. The use of laser microdissection in the identification of suitable reference genes for normalization of quantitative real-timePCR in human FFPE epithelial ovarian tissue samples. PLoS One. 2014;9(4):e95974. doi 10.1371/journal.pone.0095974

5. Cai X.B., Wu K.C., Zhang X., Lv J.N., Jin G.H., Xiang L., Chen J., Huang X.F., Pan D., Lu B., Lu F., Qu J., Jin Z.B. Whole-exome sequencing identified ARL2 as a novel candidate gene for MRCS (microcornea, rod-cone dystrophy, cataract, and posterior staphyloma) syndrome. Clin Genet. 2019;96(1):61-71. doi 10.1111/cge.13541

6. Chen F., Wang J., Zhang S., Chen M., Zhang X., Wu Z. Overexpression of SSR2 promotes proliferation of liver cancer cells and predicts prognosis of patients with hepatocellular carcinoma. J Cell Mol Med. 2022;26(11):3169-3182. doi 10.1111/jcmm.17314

7. Colman R.J. Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis. 2018;1864(9):2733-2741. doi 10.1016/j.bbadis.2017.07.008

8. de Kok J.B., Roelofs R.W., Giesendorf B.A., Pennings J.L., Waas E.T., Feuth T., Swinkels D.W., Span P.N. Normalization of gene expression measurements in tumor tissues: comparison of 13 endogenous control genes. Lab Invest. 2005;85(1):154-159. doi 10.1038/labinvest.3700208

9. Deycmar S., Gomes B., Charo J., Ceppi M., Cline J.M. Spontaneous, naturally occurring cancers in non-human primates as a translational model for cancer immunotherapy. J Immunother Cancer. 2023; 11(1):e005514. doi 10.1136/jitc-2022-005514

10. Dheda K., Huggett J.F., Chang J.S., Kim L.U., Bustin S.A., John son M.A., Rook G.A., Zumla A. The implications of using aninap propriate reference gene for real-time reverse transcription PCR data normalization. Anal Biochem. 2005;344(1):141-143. doi 10.1016/j.ab.2005.05.022

11. Doss-Pepe E.W., Stenroos E.S., Johnson W.G., Madura K. Ataxin-3 interactions with rad23 and valosin-containing protein and its associations with ubiquitin chains and the proteasome are consistent with a role in ubiquitin-mediated proteolysis. Mol Cell Biol. 2003;23(18): 6469-6483. doi 10.1128/MCB.23.18.6469-6483.2003

12. Eghlidi D.H., Urbanski H.F. Effects of age and estradiol on gene ex pression in the rhesus macaque hypothalamus. Neuroendocrinology. 2015;101(3):236-245. doi 10.1159/000381063

13. Esmaeilzadeh E., Biglari S., Mosallaei M., Khorshid H.R.K., Vahidnezhad H., Tabatabaiefar M.A. A novel homozygote pathogenic variant in the DIAPH1 gene associated with seizures, cortical blindness, and microcephaly syndrome (SCBMS): report of a family and literature review. Mol Genet Genomic Med. 2024;12(11):e70031. doi 10.1002/mgg3.70031

14. Fernandez-Moreira D., Ugalde C., Smeets R., Rodenburg R.J., Lopez Laso E., Ruiz-Falco M.L., Briones P., Martin M.A., Smeitink J.A., Arenas J. X-linked NDUFA1 gene mutations associated with mitochondrial encephalomyopathy. Ann Neurol. 2007;61(1):73-83. doi 10.1002/ana.21036

15. Georgiou M., Ali N., Yang E., Grewal P.S., Rotsos T., Pontikos N., Robson A.G., Michaelides M. Extending the phenotypic spectrum of PRPF8, PRPH2, RP1 and RPGR, and the genotypic spectrum of early-onset severe retinal dystrophy. Orphanet J Rare Dis. 2021; 16(1):128. doi 10.1186/s13023-021-01759-8

16. Kaya I., Nilsson A., Luptáková D., He Y., Vallianatou T., Bjärterot P., Svenningsson P., Bezard E., Andrén P.E. Spatial lipidomicsreveals brain region-specific changes of sulfatides in an experimental MPTP Parkinson’s disease primate model. NPJ Parkinsons Dis. 2023;9(1): 118. doi 10.1038/s41531-023-00558-1

17. Li Y., Singh J., Varghese R., Zhang Y., Fatanmi O.O., Cheema A.K., Singh V.K. Transcriptome of rhesus macaque (Macaca mulatta) exposed to total-body irradiation. Sci Rep. 2021;11(1):6295. doi 10.1038/s41598-021-85669-6

18. Liang N., Zhong R., Hou X., Zhao G., Ma S., Cheng G., Liu X. Ataxia telangiectasia mutated (ATM) participates in the regulation of ionizing radiation-induced cell death via MAPK14 in lung cancer H1299 cells. Cell Prolif. 2015;48(5):561-572. doi 10.1111/cpr.12203

19. Liu D.X., Gilbert M.H., Wang X., Didier P.J., Shields C.L., Lackner A.A. Coats-like retinopathy in a Young Indian Rhesus Macaque (Macaca mulatta). J Med Primatol. 2015;44(2):108-112. doi 10.1111/jmp.12166

20. Loeffler D.A., Klaver A.C., Coffey M.P., Aasly J.O., LeWitt P.A. Age related decrease in heat shock 70-kDa protein 8 in cerebrospinal fluid is associated with increased oxidative stress. Front Aging Neurosci. 2016;8:178. doi 10.3389/fnagi.2016.00178

21. Lomniczi A., Garcia-Rudaz C., Ramakrishnan R., Wilmot B., Khouangsathiene S., Ferguson B., Dissen G.A., Ojeda S.R. A single-nucleotide polymorphism in the EAP1 gene is associated with amenorrhea/oligomenorrhea in nonhuman primates. Endocrinology. 2012; 153(1):339-349. doi 10.1210/en.2011-1540

22. Majewski M., Ostheim P., Gluzman-Poltorak Z., Vainstein V., Basile L., Schüle S., Haimerl M., Stroszczynski C., Port M., Abend M. Gene expression changes in male and female rhesus macaque 60 days after irradiation. PLoS One. 2021;16(7):e0254344. doi 10.1371/journal.pone.0254344

23. Maniv I., Sarji M., Bdarneh A., Feldman A., Ankawa R., Koren E., Magid-Gold I., … Michaelson D., Van Leeuwen F.W., Verheijen B.M., Fuchs Y., Glickman M.H. Altered ubiquitin signaling induces Alzheimer’s disease-like hallmarks in a three-dimensional human neural cell culture model. Nat Commun. 2023;14(1):5922. doi 10.1038/s41467-023-41545-7

24. McBride J.L., Neuringer M., Ferguson B., Kohama S.G., Tagge I.J., Zweig R.C., Renner L.M., … Sherman L.S., Domire J.S., Ducore R.M., Colgin L.M., Lewis A.D. Discovery of a CLN7 model of Batten disease in non-human primates. Neurobiol Dis. 2018;119: 65-78. doi 10.1016/j.nbd.2018.07.013

25. Mishra S., Bernal C., Silvano M., Anand S., Ruiz i Altaba A. The protein secretion modulator TMED9 drives CNIH4/TGFα/GLI signaling opposing TMED3-WNT-TCF to promote colon cancer metastases. Oncogene. 2019;38(29):5817-5837. doi 10.1038/s41388-019-0845-z

26. Moshiri A., Chen R., Kim S., Harris R.A., Li Y., Raveendran M., Davis S., … Gopalakrishna K.N., Boyd K., Artemyev N.O., Rogers J., Thomasy S.M. A nonhuman primate model of inherited retinal disease. J Clin Invest. 2019;129(2):863-874. doi 10.1172/JCI123980

27. Nair H.B., Baker R., Owston M.A., Escalona R., Dick E.J., Vandeberg J.L., Nickisch K.J. An efficient model of human endometriosis by induced unopposedestrogenicity in baboons. Oncotarget. 2016; 7(10):10857-10869. doi 10.18632/oncotarget.7516

28. Noriega N.C., Kohama S.G., Urbanski H.F. Microarray analysis of relative gene expression stability for selection of internal reference genes in the rhesus macaque brain. BMC Mol Biol. 2010;11:47. doi 10.1186/1471-2199-11-47

29. Paschalis E.P., Gamsjaeger S., Condon K., Klaushofer K., Burr D. Estrogen depletion alters mineralization regulation mechanisms in an ovariectomized monkey animal model. Bone. 2019;120:279-284. doi 10.1016/j.bone.2018.11.004

30. Patterson M.M., Jackson L.R., Brooks M.B., Catalfamo J.L. Type-3 von willebrand’s disease in a rhesus monkey (Macaca mulatta). Comp Med. 2002;52(4):368-371 Peterson S.M., Mcgill T.J., Puthussery T., Stoddard J., Renner L., Lewis A.D., Colgin L.M.A., Gayet J., Wang X., Prongay K., Cullin C., Dozier B.L., Ferguson B., Neuringer M. Bardet-Biedl Syndrome in rhesus macaques: a nonhuman primate model of retinitis pigmentosa. Exp Eye Res. 2019;189:107825. doi 10.1016/j.exer.2019.107825

31. Peterson S.M., Watowich M.M., Renner L.M., Martin S., Offenberg E., Lea A., Montague M.J., Higham J.P., Snyder-Mackler N., Neu ringer M., Ferguson B. Genetic variants in melanogenesis proteins TYRP1 and TYR are associated with the golden rhesus macaque phenotype. G3 (Bethesda). 2023;13(10):jkad168. doi 10.1093/g3journal/jkad168

32. Poirier K., Hubert L., Viot G., Rio M., Billuart P., Besmond C., Bienvenu T. CSNK2B splice site mutations in patients cause intellectualdisability with or without myoclonic epilepsy. Hum Mutat. 2017; 38(8):932-941. doi 10.1002/humu.23270

33. Ramsköld D., Wang E.T., Burge C.B., Sandberg R. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol. 2009;5(12):e1000598. doi 10.1371/journal.pcbi.1000598

34. Robinson A.A., Abraham C.R., Rosene D.L. Candidate molecular pathways of white matter vulnerability in the brain of normal agingrhesus monkeys. GeroScience. 2018;40(1):31-47. doi 10.1007/s11357-018-0006-2

35. Serrano-Lorenzo P., Rabasa M., Esteban J., Hidalgo Mayoral I., Domínguez-González C., Blanco-Echevarría A., Garrido-Moraga R., Lucia A., Blázquez A., Rubio J.C., Palma-Milla C., Arenas J., Mar tín M.A. Clinical, biochemical, and molecular characterization of two families with novel mutations in the LDHA gene (GSD XI). Genes (Basel). 2022;13(10):1835. doi 10.3390/genes13101835

36. Sherman L.S., Su W., Johnson A.L., Peterson S.M., Cullin C., Lavin der T., Ferguson B., Lewis A.D. A novel non-human primate model of Pelizaeus-Merzbacher disease. Neurobiol Dis. 2021;158:105465. doi 10.1016/j.nbd.2021.105465

37. Silver N., Cotroneo E., Proctor G., Osailan S., Paterson K.L., Carpenter G.H. Selection of housekeeping genes for gene expression studies in the adult rat submandibular gland under normal, inflamed, atrophic and regenerative states. BMC Mol Biol. 2008;9:64. doi 10.1186/1471-2199-9-64

38. Singh K.K., Krawczak M., Dawson W.W., Schmidtke J. Association of HTRA1 and ARMS2 gene variation with drusen formation in rhesus macaques. Exp Eye Res. 2009;88(3):479-482. doi 10.1016/j.exer.2008.10.019

39. Smith A.C., Mears A.J., Bunker R., Ahmed A., Mackenzie M., Schwartzentruber J.A., Beaulieu C.L., Ferretti E., Majewski J., Bul man D.E., Celik F.C., Boycott K.M., Graham G.E. Mutations in the enzyme glutathione peroxidase 4 cause Sedaghatian-type spondy lometaphyseal dysplasia. J Med Genet. 2014;51(7):470-474. doi 10.1136/jmedgenet-2013-102218

40. Stevanin G., Fujigasaki H., Lebre A.S., Camuzat A., Jeannequin C., Dode C., Takahashi J., San C., Bellance R., Brice A., Durr A. Huntington’s disease-like phenotype due to trinucleotide repeat expansions in the TBP and JPH3 genes. Brain. 2003;126:1599-1603. doi 10.1093/brain/awg155

41. Sun Y., Yang X., Liu M., Tang H. B4GALT3 up-regulation by miR-27a contributes to the oncogenic activity in human cervical cancer cells. Cancer Lett. 2016;375(2):284-292. doi 10.1016/j.canlet.2016.03.016

42. Tanackovic G., Ransijn A., Thibault P., Abou Elela S., Klinck R., Ber son E.L., Chabot B., Rivolta C. PRPF mutations are associated with generalized defects in spliceosome formation and pre-mRNA splicing in patients with retinitis pigmentosa. Hum Mol Genet. 2011;20: 2116-2130. doi 10.1093/hmg/ddr094

43. Tanaka M., Fujikawa R., Sekiguchi T., Hernandez J., Johnson O.T., Tanaka D., Kumafuji K., … Hattori K., Mashimo T., Kuwamura M., Gestwicki J.E., Kuramoto T. A missense mutation in the Hspa8 gene encoding heat shock cognate protein 70 causes neuroaxonal dystro phy in rats. Front Neurosci. 2024;18:1263724. doi 10.3389/fnins.2024.1263724

44. Tu Z., Wang L., Xu M., Zhou X., Chen T., Sun F. Further understanding human disease genes by comparing with housekeeping genes and other genes. BMC Genomics. 2006;7:31. doi 10.1186/1471-2164-7-31

45. Tutar Y. Pseudogenes. Comp Funct Genomics. 2012;2012:424526. doi 10.1155/2012/424526

46. Ueda Y., Slabaugh T.L., Walker A.L., Ontiveros E.S., Sosa P.M., Rea der R., Roberts J.A., Stern J.A. Heart rate and heart rate variability of rhesus macaques (Macaca mulatta) affected by left ventricular hypertrophy. Front Vet Sci. 2019;6:1. doi 10.3389/fvets.2019.00001

47. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3(7):research0034. doi 10.1186/gb-2002-3-7-research0034

48. Wang H., Wang Y., Tan P., Liu Y., Zhou S., Ma W. Prognostic value and anti-tumor immunity role of TMED9 in pan-cancer: a bioinformatics study. Transl Cancer Res. 2024;13(10):5429-5445. doi 10.21037/tcr-24-258

49. Wei H., Zhang Y., Jia Y., Chen X., Niu T., Chatterjee A., He P., Hou G. Heat shock protein 90: biological functions, diseases, and therapeutic targets. MedComm. 2024;5(2):e470. doi 10.1002/mco2.470

50. Zhang D., Liu X., Xu X., Xu J., Yi Z., Shan B., Liu B. HPCAL1 pro motes glioblastoma proliferation via activation of Wnt/β-catenin signalling pathway. J Cell Mol Med. 2019;23:3108-3117. doi 10.1111/jcmm.14083

51. Zhang Y.B., Zheng S.F., Ma L.J., Lin P., Shang-Guan H.C., Lin Y.X., Kang D.Z., Yao P.S. Elevated hexose-6-phosphate dehydrogenase regulated by OSMR-AS1/hsa-miR-516b-5p axis correlates with poor prognosis and dendritic cells infiltration of glioblastoma. Brain Sci. 2022;12(8):1012. doi 10.3390/brainsci12081012

52. Zühlke C., Hellenbroich Y., Dalski A., Kononowa N., Hagenah J., Vieregge P., Riess O., Klein C., Schwinger E. Different types of repeat expansion in the TATA-binding protein gene are associated with a new form of inherited ataxia. Eur J Hum Genet. 2001;9:160-164. doi 10.1038/sj.ejhg.5200617


Review

Views: 23

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)