Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Breeding for the absence of proanthocyanidins in grain of barley (Hordeum vulgare L.): molecular genetic and technological aspects

https://doi.org/10.18699/vjgb-25-142

Abstract

Phenolic compounds constitute a significant group of secondary metabolites in barley grain and influence its technological qualities when used in brewing, feed production, and food manufacturing. Proanthocyanidins – polymeric flavonoids localized in the seed coat – play a particularly important role among them. These compounds are responsible for several production issues, such as colloidal haze in beer and browning of groats after heat treatment. Although proanthocyanidins possess health-beneficial properties based on their antioxidant activity, they can act as antinutritional factors due to their ability to bind proteins. In this regard, the breeding of barley varieties completely lacking proanthocyanidins in the grain was initiated, primarily for use in the brewing industry. Initially, it was assumed that their absence would not be critical for the plant, since wheat, corn, and rice varieties lacking proanthocyanidins in the grain had been identified. However, accumulated evidence indicates that proanthocyanidins perform important physiological functions: they contribute to the maintenance of seed dormancy, provide protection against fungal and bacterial pathogens and pests, and their absence negatively affects agronomic traits. For instance, proanthocyanidin free barley mutants obtained through induced mutagenesis exhibit reduced productivity and pathogen resistance, an increased risk of pre-harvest sprouting, and deterioration of several technologically important properties. Nevertheless, these mutant lines are actively used in breeding programs to develop varieties for various purposes. This review aims to systematize and analyze global experience in breeding proanthocyanidin-free barley varieties, describing achieved results to identify the most successful approaches and define future research directions. The work examines challenges faced by breeders when using mutant lines, as well as strategies that have helped minimize negative side effects. It is demonstrated that through targeted crossing and optimal selection of mutant alleles, competitive varieties have been developed that combine the required technological qualities with satisfactory agronomic performance, meeting the demands of both the brewing and food industries.

About the Authors

C. A. Molobekova
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk



I. V. Totsky
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk



N. V. Trubacheeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk



O. Yu. Shoeva
Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Novosibirsk



References

1. Bamforth C. Current perspectives on the role of enzymes in brewing. J Cereal Sci. 2009;50(3):353-357. doi 10.1016/j.jcs.2009.03.001

2. Bartłomiej S., Justyna R.-K., Ewa N. Bioactive compounds in cereal grains – occurrence, structure, technological significance and nutritional benefits – a review. Food Sci Technol Int. 2012;18(6):559-568. doi 10.1177/1082013211433079

3. Bregitzer P., Wesenberg D.M., Jones B.L. Effect of the ANT-13 locus (proanthocyanidin-free) on the malting quality and agronomic performance of barley. J Am Soc Brew Chem. 1995;53(4):191-193. doi 10.1094/ASBCJ-53-0191

4. Brillouet J.-M., Romieu C., Schoefs B., Solymosi K., Cheynier V., Fulcrand H., Verdeil J.-L., Conéjéro G. The tannosome is an organelle forming condensed tannins in the chlorophyllous organs of Tracheophyta. Ann Bot. 2013;112(6):1003-1014. doi 10.1093/aob/mct168

5. Bulanov A.N., Andreeva E.A., Tsvetkova N.V., Zykin P.A. Regulation of flavonoid biosynthesis by the MYB-bHLH-WDR (MBW) complex in plants and its specific features in cereals. Int J Mol Sci. 2025;26(2):734. doi 10.3390/ijms26020734

6. Ci X.-F., Wu D.-X., Lou X.-Y., Xia Y., Shu Q. Comparative studies on the starch gelatinization characteristics of five cereal crops. Acta Agron Sin. 2003;29(2):300-304

7. Debeaujon I., Léon-Kloosterziel K.M., Koornneef M. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 2000;122(2):403-413. doi 10.1104/pp.122.2.403

8. Delcour J.A., Schoeters M.M., Meysman E.W., Dondeyne P., Moerman E. The intrinsic influence of catechins and procyanidins on beer haze formation. J Inst Brew. 1984;90(6):381-384. doi 10.1002/j.2050-0416.1984.tb04293.x

9. Dixon R.A., Xie D.-Y., Sharma S.B. Proanthocyanidins – a final frontier in flavonoid research? New Phytol. 2005;165(1):9-28. doi 10.1111/j.1469-8137.2004.01217.x

10. Erdal K. Proanthocyanidin-free barley – malting and brewing. J Inst Brew. 1986;92(3):220-224. doi 10.1002/j.2050-0416.1986.tb04404.x

11. Figueroa J.D.C., Madson M.A., D’Appolonia B.L. The malting and brewing quality of crosses of barley anthocyanogen-free mutants. J Am Soc Brew Chem. 1989;47(2):44-48. doi 10.1094/ASBCJ-47-0044

12. Fukuda K., Saito W., Arai S., Aida Y. Production of a novel proanthocyanidin-free barley line with high quality. J Inst Brew. 1999;105(3):179-184. doi 10.1002/j.2050-0416.1999.tb00017.x

13. Golovin V.V., Levakova O.V., Artem'eva E.A. Innovative Tech nology of Spring Barley Cultivation for Brewing Purposes Using Modern and Promising Varieties. Ryazan', 2008 (in Russian)

14. GOST 5060–2021. Regional standard. Malting Barley: Specification. Promulgated by the RF Federal Agency for Technical Regulation and Measurement, Directive No. 1714-st of December 6, 2021. (in Russian)

15. He F., Pan Q.-H., Shi Y., Duan C.-Q. Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules. 2008;13(10):26742703. doi 10.3390/molecules13102674

16. Himi E., Yamashita Y., Haruyama N., Yanagisawa T., Maekawa M., Taketa S. Ant28 gene for proanthocyanidin synthesis encoding the R2R3 MYB domain protein (Hvmyb10) highly affects grain dormancy in barley. Euphytica. 2011;188(1):141-151. doi 10.1007/s10681-011-0552-5

17. Horsley R.D., Schwarz P.B., Foster A.E. Effects of gene ant13 on agronomic and malt quality traits of barley. Crop Sci. 1991;31(3):593-598. doi 10.2135/cropsci1991.0011183X003100030009x

18. Jende-Strid B. Genetic control of flavonoid biosynthesis in barley. Hereditas. 1993;119(2):187-204. doi 10.1111/j.1601-5223.1993.00187.x

19. Khokonova M. Influence of barley harvesting method on grain yield and brewing qualities. Innovation Science. 2015;(8-2):87-88 (in Russian)

20. Kohyama N., Fujita M., Ono H., Ohnishi-Kameyama M., Matsunaka H., Takayama T., Murata M. Effects of phenolic compounds on the browning of cooked barley. J Agric Food Chem. 2009;57(14):6402-6407. doi 10.1021/jf901944m

21. Kumar K., Sinha R.R.K., Kumar S., Nirala R.K., Kumari S., Sahu S.P. Significance of tannins as an alternative to antibiotic growth promoters in poultry production. Pharma Innovation J. 2022;11(11S):1435-1440

22. Kumar V., Chaturvedi S., Singh G. Brief review of malting quality and frontier areas in barley. Cereal Res Commun. 2023;51(1):45-59. doi 10.1007/s42976-022-00292-z

23. Lee M.J., Kim Y.-K., Kim K.-H., Seo W.-D., Kang H.-J., Park J.-C., Hyun J.-N., Park K.-H. Quality characteristics and development of naked waxy barley (Hordeum vulgare L.) cultivar “Yeongbaekchal”

24. without discoloration of cooked barley. Korean J Breed Sci. 2016;48(4):529-534. doi 10.9787/KJBS.2016.48.4.529

25. Øverland M., Heintzman K.B., Newman C.W., Newman R.K., Ullrich S.E. Chemical composition and physical characteristics of proanthocyanidin-free and normal barley isotypes. J Cereal Sci. 1994; 20(1):85-91. doi 10.1006/jcrs.1994.1048

26. Palmer G. Enzyme development in the aleurone and embryos of Galant and Triumph barleys. J Inst Brew. 1988;94(2):61-63. doi 10.1002/j.2050-0416.1988.tb04557.x

27. Pérez-Díaz R., Madrid-Espinoza J., Salinas-Cornejo J., González-Villanueva E., Ruiz-Lara S. Differential roles for VviGST1, VviGST3, and VviGST4 in proanthocyanidin and anthocyanin transport in Vitis vinífera. Front Plant Sci. 2016;7:1166. doi 10.3389/fpls.2016.01166

28. Rustgi S., Brouwer B., von Wettstein D., Reisenauer P.E., Lyon S., Ankrah N., Jones S., Guy S.O., Chen X. Registration of ‘Fritz’, a two-row spring barley. J Plant Regist. 2020;14(3):242-249. doi 10.1002/plr2.20046

29. Saito K., Kobayashi M., Gong Z., Tanaka Y., Yamazaki M. Direct evidence for anthocyanidin synthase as a 2-oxoglutarate-dependent oxygenase: molecular cloning and functional expression of cDNA from a red forma of Perilla frutescens. Plant J Cell Mol Biol. 1999;17(2):181-189. doi 10.1046/j.1365-313x.1999.00365.x

30. Santos-Buelga C., Scalbert A. Proanthocyanidins and tannin-like compounds – nature, occurrence, dietary intake and effects on nutrition and health. J Sci Food Agric. 2000;80(7):1094-1117. doi 10.1002/(SICI)1097-0010(20000515)80:7%3C1094::AID-JSFA569%3E3.0.CO;2-1

31. Shoeva O.Yu., Mursalimov S.R., Gracheva N.V., Glagoleva A.Yu., Börner A., Khlestkina E.K. Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Sci Rep. 2020;10(1):179. doi 10.1038/s41598-019-56982-y

32. Takahashi A., Yoshioka T., Yanagisawa T., Nagamine T., Sugita T. Breeding of Fukumi Fiber, a new six-rowed waxy hull-less barley cultivar containing high levels of β-glucan with a proanthocyanidin free gene. Breed Sci. 2025;75(3):236-243. doi 10.1270/jsbbs.24080

33. Takayama T., Sotome T., Oozeki M., Haruyama N., Yamaguchi M., Okiyama T., Nagamine T., Kato T., Watanabe H., Oono K. Breeding of a new two-rowed pearling barley cultivar “Tochinoibuki”. Bull Tochigi Agric Exp Station. 2011;66:53-66

34. Tanner G.J., Francki K.T., Abrahams S., Watson J.M., Larkin P.J., Ashton A.R. Proanthocyanidin biosynthesis in plants. Purification of legume leucoanthocyanidin reductase and molecular cloning of its cDNA. J Biol Chem. 2003;278(34):31647-31656. doi 10.1074/jbc.M302783200

35. Tonooka T., Kawada N., Yoshida M., Yoshioka T., Oda S., Hatta K., Hatano T., Fujita M., Kubo K. Breeding of a new food barley cultivar “Shiratae Nijo” exhibiting no after-cooking discoloration. Breed Sci. 2010;60(2):172-176

36. Totsky I.V., Li R., Shoeva O.Yu. The effect of the Ant25, Ant26 and Ant27 loci controlling proanthocyanidin synthesis in barley (Hordeum vulgare L.) grain on plant growth and development. Proceedings on Applied Botany, Genetics and Breeding. 2024;185(2): 138-146. doi 10.30901/2227-8834-2024-2-138-146 (in Russian)

37. Trubacheeva N.V., Pershina L.A. Problems and possibilities of studying malting quality in barley using molecular genetic approaches. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2021;25(2):171-177. doi 10.18699/VJ21.021

38. Van Hung P. Phenolic compounds of cereals and their antioxidant capacity. Crit Rev Food Sci Nutr. 2016;56(1):25-35. doi 10.1080/10408398.2012.708909

39. von Wettstein D. Breeding of value added barley by mutation and protein engineering. In: Induced Mutations and Molecular Techniques for Crop Improvement: Proceedings of an international symposium. Vienna, 1995;67-76

40. Von Wettstein D. From analysis of mutants to genetic engineering. Annu Rev Plant Biol. 2007;58:1-19. doi 10.1146/annurev.arplant.58.032806.104003

41. von Wettstein D., Jende-Strid B., Ahrenst-Larsen B., Sørensen J.A. Biochemical mutant in barley renders chemical stabilization of beer superfluous. Carlsberg Res Commun. 1977;42(5):341-351. doi 10.1007/BF02906119

42. von Wettstein D., Cochran J., Ullrich S., Kannangara C., Jitkov V., Burns J., Reisenauer P., Chen X., Jones B. Registration of ’Radiant’ barley. Crop Sci. 2004;44(5):1859-1861. doi 10.2135/cropsci2004.1859

43. Wang Y., Ye L. Haze in beer: its formation and alleviating strategies, from a protein–polyphenol complex angle. Foods. 2021;10(12):3114. doi 10.3390/foods10123114

44. Wesenberg D.M., Jones B.L., Robbins G.S., Cochran J. Malting quality and agronomic characteristics of selected proanthocyanidin-free barleys. J Am Soc Brew Chem. 1989;47(3):82-86. doi 10.1094/ASBCJ-47-0082

45. Winkel B.S.J. Metabolic channeling in plants. Annu Rev Plant Biol. 2004;55:85-107. doi 10.1146/annurev.arplant.55.031903.141714

46. Wu G. Associations between three proanthocyanidin-free genes and some important characteristics in barley (Hordeum vulgare L.). PhD thesis. Univ. of Saskatchewan, 1995

47. Xie D.-Y., Sharma S.B., Paiva N.L., Ferreira D., Dixon R.A. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science. 2003;299(5605):396-399. doi 10.1126/science.1078540

48. Yamaguchi M., Oozeki M., Sotome T., Oyama M., Kato T., Sekiwa T., Mochizuki T., Okiyama T., Haruyama N., Takayama T. “Mochikinuka”, a new two-rowed waxy hulled barley cultivar with superior characteristics of food quality. Bull Tochigi Prefect Agric Exp Stn Jpn. 2019;79:1-22

49. Yanagisawa T., Nagamine T., Takahashi A., Takayama T., Doi Y., Matsunaka H., Fujita M. Breeding of Kirari-mochi: a new two rowed waxy hull-less barley cultivar with superior quality characteristics. Breed Sci. 2011;61(3):307-310. doi 10.1270/jsbbs. 61.307

50. Yu K., Song Y., Lin J., Dixon R.A. The complexities of proanthocyanidin biosynthesis and its regulation in plants. Plant Commun. 2023;4(2):100498. doi 10.1016/j.xplc.2022.100498


Review

Views: 37

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)