Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Using a wheat line with wild emmer genetic material to improve modern Triticum aestivum L. varieties by a complex of economically useful traits

https://doi.org/10.18699/vjgb-25-130

Abstract

Wild emmer Triticum dicoccoides samples have a high content of protein and microelements in their grain, but when crossed with common wheat varieties, undesirable properties of a wild relative (low yield, spike fragility and difficult threshing) can be transmitted to the hybrid along with valuable traits. The possibility of improving economically useful traits of modern common wheat varieties using a wheat line with wild emmer genetic material (l29), combining high cytological stability with improved nutritional value and productivity, was studied. The F4–F5 hybrids obtained as a result of crossing in the forward and reverse directions of four common spring wheat varieties with l29 were studied. A C-banding technique and genotyping with SSR markers were used to determine the introgression fragments of T. dicoccoides genetic material. Cytological stability was assessed based on the study of chromosome behavior in microsporogenesis. The grain content of macro- (K, P, Ca and Mg) and microelements (Zn, Fe, Cu and Mn) was established by atomic emission spectrometry with inductively coupled plasma; the grain quality indices were measured on an Infra LUM FT-12 analyzer. The C-banding and microsatellite analysis data indicate a high frequency of alien genetic material introgression in the genome of hybrid forms. All variants of the l29 introgression of wild emmer material (1BL, 2BS, 3B, 5B and 6AL) were identified among the progeny of eight crossing combinations. The recombinant chromosome 3B was found in all hybrid combinations. The hybrids were characterized by a high level of cytological stability (the meiotic index was 90.0–98.0 %). The effectiveness of using a wheat line with T. dicoccoides genetic material to enhance modern varieties in terms of the content of protein, gluten and mineral composition of grain without reducing productivity was shown. Secondary introgression hybrids, exceeding the initial varieties by a set of grain quality characteristics and not inferior to them in terms of basic productivity indicators, were obtained.

About the Authors

O. A. Orlovskaya
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Minsk



K. K. Yatsevich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Minsk



L. V. Milko
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Minsk



N. M. Kaznina
Institute of Biology of the Karelian Research Centre of the Russian Academy of Sciences
Russian Federation

Petrozavodsk



N. I. Dubovets
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Minsk



A. V. Kilchevsky
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Minsk



References

1. Akcura M., Kokten K. Variations in grain mineral concentrations of Turkish wheat landraces germplasm. Qual Assur Saf Crops Foods. 2017;9(2):153159. doi 10.3920/QAS2016.0886

2. Alemu A., El Baouchi A., El Hanafi S., Kehel Z., Eddakhir K., Tadesse W. Genetic analysis of grain protein content and dough quality traits in elite spring bread wheat (Triticum aestivum) lines through association study. J Cereal Sci. 2021;100:103214. doi 10.1016/j.jcs.2021.103214

3. Arora S., Cheema J., Poland J., Uauy C., Chhuneja P. Genomewide association mapping of grain micronutrients concentration in Aegilops tauschii. Front Plant Sci. 2019;10:54. doi 10.3389/fpls.2019.00054

4. Badaeva E.D., Badaev N.S., Gill D.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum (Poaceae). Plant Syst Evol. 1994;192(1):117145. doi 10.1007/BF00985912

5. Bhullar R., Nagarajan R., Bennypaul H., Sidhu G.K., Sidhu G., Rustgi S., von Wettstein D., Gill K.S. Silencing of a metaphase Ispecific gene results in a phenotype similar to that of the pairing homeologous 1 (Ph1) gene mutations. Proc Natl Acad Sci USA. 2014;111(39):1418714192. doi 10.1073/pnas.1416241111

6. Cakmak I., Ozkan H., Braun H.J., Welch R.M., Romheld V. Zinc and iron concentration in seeds of wild, primitive and modern wheats. Food Nutr Bull. 2000;21(4):401403. doi 10.1177/156482650002100411

7. Chatzav M., Peleg Z., Ozturk L., Yazici A., Fahima T., Cakmak I., Saranga Y. Genetic diversity for grain nutrients in wild emmer wheat: potential for wheat improvement. Ann Bot. 2010;105(7):12111220. doi 10.1093/aob/mcq024

8. Darrier B., Colas I., Rimbert H., Choulet F., Bazile J., Sortais A., Jenczewski E., Sourdille P. Location and identification on chromosome 3B of bread wheat of genes affecting chiasma number. Plants. 2022;11(17):2281. doi 10.3390/plants11172281

9. Fatiukha A., Filler N., Lupo I., Lidzbarsky G., Klymiuk V., Korol A.B., Pozniak C., Fahima T., Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. Theor Appl Genet. 2020;133(1):119131. doi 10.1007/s00122019034448

10. Giancaspro A., Giove S.L., Zacheo S.A., Blanco A., Gadaleta A. Genetic variation for protein content and yieldrelated traits in a durum population derived from an inter-specific cross between hexaploid and tetraploid wheat cultivars. Front Plant Sci. 2019;10:1509. doi 10.3389/fpls.2019.01509

11. Goel S., Singh B., Gwal S., Jaat R.S., Singh N.K. Variability in Fe and Zn content among Indian wheat landraces for improved nutritional quality. Indian J Genet Plant Breed. 2018;78(4):426432. doi 10.31742/IJGPB.78.4.4

12. GonzalezHernandez J., Elias E., Kianian S. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica. 2004;139:217225. doi 10.1007/s1068100431574

13. Gupta P.K., Balyan H.S., Sharma S., Kumar R. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects. Theor Appl Genet. 2021;134(1):135. doi 10.1007/s00122020037097

14. Hao Y., Velu G., Peña R.J., Singh S., Singh R.P. Genetic loci associated with high grain zinc concentration and pleiotropic effect on kernel weight in wheat (Triticum aestivum L.). Mol Breed. 2014;34(4):18931902. doi 10.1007/s1103201401477

15. Heidari B., Padash S., Dadkhodaie A. Variations in micronutrients, bread quality and agronomic traits of wheat landrace varieties and commercial cultivars. Aust J Crop Sci. 2016;10(3):377384. doi 10.21475/ajcs.2016.10.03.p7231

16. Kartseva T., Alqudah A.M., Aleksandrov V., Alomari D.Z., Doneva D., Arif M.A.R., Börner A., Misheva S. Nutritional genomic approach for improving grain protein content in wheat. Foods. 2023; 12(7):1399. doi 10.3390/foods12071399

17. Liu J., Huang L., Wang C., Liu Y., Yan Z., Wang Z., Xiang L., Zhong X., Gong F., Zheng Y., Liu D., Wu B. Genomewide association study reveals novel genomic regions associated with high grain protein content in wheat lines derived from wild emmer wheat. Front Plant Sci. 2019;10:464. doi 10.3389/fpls.2019.00464

18. Liu J., Huang L., Li T., Liu Y., Yan Z., Tang G., Zheng Y., Liu D., Wu B. Genomewide association study for grain micronutrient concentrations in wheat advanced lines derived from wild emmer. Front Plant Sci. 2021;12:651283. doi 10.3389/fpls.2021.651283

19. Lucas S.J., Salantur A., Yazar S., Budak H. Highthroughput SNP genotyping of modern and wild emmer wheat for yield and root morphology using a combined association and linkage analysis. Funct Integr Genomics. 2017;17(6):667685. doi 10.1007/s101420170563y

20. MarcosBarbero E.L., Pérez P., MartínezCarrasco R., Arellano J.B., Morcuende R. Genotypic variability on grain yield and grain nutritional quality characteristics of wheat grown under elevated CO2 and high temperature. Plants. 2021;10(6):1043. doi 10.3390/plants10061043

21. Millet E., Rong J.K., Qualset C.O., McGuire P.E., Bernard M., Sourdille P., Feldman M. Production of chromosomearm substitution lines of wild emmer in common wheat. Euphytica. 2013;190(1):117. doi 10.1007/s106810120725x

22. Mohammadi M., Mirlohi A., Majidi M.M., Soleimani Kartalaei E. Emmer wheat as a source for trait improvement in durum wheat: a study of general and specific combining ability. Euphytica.2021;217:64. doi 10.1007/s1068102102796x

23. Muqaddasi Q.H., Brassac J., Ebmeyer E., Kollers S., Korzun V., Argillier O., Stiewe G., Plieske J., Ganal M.W., Röder M.S. Prospects of GWAS and predictive breeding for European winter wheat’s grain

24. protein content, grain starch content, and grain hardness. Sci Rep. 2020;10(1):12541. doi 10.1038/s41598020693815

25. Orlovskaya O., Dubovets N., Solovey L., Leonova I. Molecular cytological analysis of alien introgressions in common wheat lines derived from the cross of Triticum aestivum with T. kiharae. BMC Plant Biol. 2020;20(Suppl. 1):201. doi 10.1186/s12870020024072

26. Orlovskaya O.A., Vakula S.I., Khotyleva L.V., Kilchevsky A.V. Mineral composition of bread wheat lines with introgressions of alien genetic material. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics and Breeding. 2023а;184(1):42-52. doi 10.30901/22278834202314252 (in Russian)

27. Orlovskaya О.A., Leonova I.N., Solovey L.A., Dubovets N.I. Molecular cytological analysis of alien introgres sions in common wheat lines created by crossing of Triticum aestivum with T. dicoccoides and T. dicoccum. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2023b;27(6):553564. doi 10.18699/VJGB2367

28. Özkan H., Willcox G., Graner A., Salamini F., Kilian B. Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol. 2011;58:1153. doi 10.1007/s1072201095815

29. Paina C., Gregersen P.L. Recent advances in the genetics underlying wheat grain protein content and grain protein deviation in hexaploid wheat. Plant Biol. 2023;25(5):661670. doi 10.1111/plb.13550

30. Pausheva Z.P. Practicum on Plant Cytology. Moscow, 1988 (in Russian)

31. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998; 149:20072023. doi 10.1093/genetics/149.4.2007

32. Ruan Y., Yu B., Knox R.E., Zhang W., Singh A.K., Cuthbert R., Fobert P., DePauw R., Berraies S., Sharpe A., Fu B.X., Sangha J. Conditional mapping identified quantitative trait loci for grain protein concentration expressing independently of grain yield in Canadian durum wheat. Front Plant Sci. 2021;12:642955. doi 10.3389/fpls.2021.642955

33. Savin T.V., Abugaliyeva A.I., Cakmak I., Kozhakhmetov K. Mine ralcomposition of wild relatives and introgressive forms in wheat selection. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov J Genet Breed. 2018;22(1):8896. doi 10.18699/VJ18.335 (in Russian)

34. Shewry P.R., Pellny T.K., Lovegrove A. Is modern wheat bad for health? Nat Plants. 2016;2(7):16097. doi 10.1038/nplants.2016.97

35. Somers D.J., Isaac P., Edwards K. A highdensity microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet. 2004;109(6):11051114. doi 10.1007/s0012200417407

36. Tanin M.J., Sharma A., Saini D.K., Singh S., Kashyap L., Srivastava P., Mavi G.S., Kaur S., Kumar V., Kumar V., Grover G., Chhuneja P., Sohu V.S. Ascertaining yield and grain protein content stability in wheat genotypes having the Gpc-B1 gene using univariate, multivariate, and correlation analysis. Front Genet. 2022;13:1001904. doi 10.3389/fgene.2022.1001904

37. Thorwarth P., Liu G., Ebmeyer E., Schacht J., Schachschneider R., Kaz man E., Reif J.C., Würschum T., Longin C. Dissecting the genetics underlying the relationship between protein content and grain yield in a large hybrid wheat population. Theor Appl Genet. 2019; 132(2):489500. doi 10.1007/s001220183236x

38. Tiwari V.K., Rawat N., Neelam K., Kumar S., Randhawa G.S., Dhaliwal H.S. Substitutions of 2S and 7U chromosomes of Aegilops kotschyi in wheat enhance grain iron and zinc concentration. Theor Appl Genet. 2010;121(2):259269. doi 10.1007/s00122010 13078

39. Tong J., Sun M., Wang Y., Zhang Y., Rasheed A., Li M., Xia X., He Z., Hao Y. Dissection of molecular processes and genetic architecture underlying iron and zinc homeostasis for biofortification: from model plants to common wheat. Int J Mol Sci. 2020;21(23):9280. doi 10.3390/ijms21239280

40. Velu G., Singh R.P., CrespoHerrera L., Juliana P., Dreisigacker S., Valluru R., Stangoulis J., … Balasubramaniam A., Chatrath R., Gupta V., Singh G.P., Joshi A.K. Genetic dissection of grain zinc concentration in spring wheat for mainstreaming biofortification in CIMMYT wheat breeding. Sci Rep. 2018;8(1):13526. doi 10.1038/s4159801831951z

41. Zeibig F., Kilian B., Frei M. The grain quality of wheat wild relatives in the evolutionary context. Theor Appl Genet. 2022;135(11):40294048. doi 10.1007/s00122021040138


Review

Views: 21

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)