1. Beall C.M., Cavalleri G.L., Deng L., Elston R.C., Gao Y., Knight J., Li C., Li J.C., Liang Y., McCormack M., Montgomery H.E., Pan H., Robbins P.A., Shianna K.V., Tam S.C., Tsering N., Veeramah K.R., Wang W., Wangdui P., Weale M.E., Xu Y., Xu Z., Yang L., Zaman M.J., Zeng C., Zhang L., Zhang X., Zhaxi P., Zheng Y.T. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA. 2010;107(25):11459-11464. https://doi.org/10.1073/pnas.1002443107
2. Billaut F., Gore C.J., Aughey R.J. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42:751-67. https://doi.org/10.2165/11634050-000000000-00000
3. Bouchard C., Rankinen T., Chagnon Y.C., Rice T., Perusse L., Gagnon J., Borecki I., An P., Leon A.S., Skinner J.S., Wilmore J.H., Province M., Rao D.C. Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J. Appl. Physiol. 2000;88:551-559.
4. Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH-PAS factor with close sequence similarity to hypoxia inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA. 1997;94:4273-4278.
5. Eynon N., Hanson E.D., Lucia A., Houweling P.J., Garton F., North K. N., Bishop D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013;43:803-817. https://doi.org/10.1007/s40279-013-0059-4
6. Formenti F., Constantin-Teodosiu D., Emmanuel Y., Cheeseman J., Dorrington K.L., Edwards L.M., Humphreys S.M., Lappin T.R., McMullin M.F., McNamara C.J., Mills W., Murphy J.A., O’Connor D. F., Percy M.J., Ratcliffe P.J., Smith T.G., Treacy M., Frayn K.N., Greenhaff P.L., Karpe F., Clarke K., Robbins P.A. Regulation of human metabolism by hypoxia-inducible factor. Proc. Natl Acad. Sci. USA. 2010;107(28):12722-12727. https://doi.org/10.1073/pnas.1002339107
7. Ge R.L., Simonson T.S., Cooksey RC., Tanna U., Qin G., Huff C.D., Witherspoon D.J., Xing J., Zhengzhong B., Prchal J.T., Jorde L.B., McClain D.A. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol. Genet. Metab. 2012;106(2):244-247. https://doi.org/10.1016/j.ymgme.2012.03.003
8. Giaccia A.J., Simon M.C., Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004;18:2183-2194.
9. Henderson J., Withford-Cave J.M., Duffy D.L., Cole S.J., Sawyer N.A., Gulbin J.P., Hahn A., Trent R.J., Yu B. The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes. Hum. Genet. 2005;118:416-423.
10. Kelly K.R., Williamson D.L., Fealy C.E., Kriz D.A., Krishnan R.K., Huang H., Ahn J., Loomis J.L., Kirwan J.P. Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans. Metabolism. 2010;59(2):200-205. https://doi.org/10.1016/j.metabol.2009.07.014
11. Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3): 177-185.
12. Loboda A., Jozkowicz A., Dulak J. HIF-1 versus HIF-2-is one more important than the other? Vascul. Pharmacol. 2012;56:245-251. https://doi.org/10.1016/j.vph.2012.02.006
13. Majmundar A.J., Wong W.J., Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010;40:294-309. https://doi.org/10.1016/j.molcel.2010.09.022
14. Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187-197.
15. Scortegagna M., Morris M.A., Oktay Y., Bennett M., Garcia J.A. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood. 2003;102:1634-1640.
16. Takeda N., Maemura K., Imai Y., Harada T., Kawanami D., Nojiri T., Manabe I., Nagai R. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circulation Res. 2004; 95:146-153.
17. Tian H., Hammer R.E., Matsumoto A.M., Russell D.W., McKnight S.L. The hypoxia-responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 1998;12:3320-3324.
18. Tian H., McKnight S.L., Russell D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72-82.
19. Voisin S., Cieszczyk P., Pushkarev V.P., Dyatlov D.A., Vashlyayev B. F., Shumaylov V.A., Maciejewska-Karlowska A., Sawczuk M., Skuza L., Jastrzebski Z., Bishop D.J., Eynon N. EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. BMC Genomics. 2014;18(15):382. https://doi.org/10.1186/1471-2164-15-382
20. Wada T. Transcription factor EPAS1 regulates insulin signaling pathway. Yakugaku Zasshi. 2007;127(1):143-151.