Association of the EPAS1 gene G/A polymorphism with successful performance in a group of Russian wrestlers
https://doi.org/10.18699/VJ16.121
Abstract
A large number of studies showed that the gene EPAS1 may serve as a possible predictor of success in sports because of its influence on the processes of oxygen transportation and consumption. However, data concerning the impact of EPAS1 polymorphisms on sports achievements in the modern research literature are very scarce and contradictory. The aim of the present paper was to study genetic selection in the polymorphic system of the EPAS1 gene (rs1867785) in a group of male sambo practitioners. 312 Russian males from 18 to 30 years of age were studied. Of them, 220 were professional athletes and 92 were non-athletes, who served as the control group. The genotype of a single nucleotide G/A polymorphic system of the EPAS1 gene was determined for each participant of the study. Analysis of genotype frequencies revealed statistically significant differences between the two groups. An increase of АА and AG genotype frequencies was revealed in the group of athletes (χ2 = 8.68, p = 0.01). Thus, for sambo practitioners, who reached high levels, the presence of the minor А-allele in the genotypes was typical. The odd ratio (OR) calculated for this group was 1.800 (95 % CI 1.227–2.641), demonstrating that the carriers of the А-allele of the EPAS1 gene had some advantages over the carriers of the G-allele. OR for the highest-rank wrestlers was even higher, 1.990 (95 % CI 1.195–3.313). These results suggest directed genetic selection in the А-allele carriers of the EPAS1 gene among sambo practitioners.
About the Authors
E. A. BondarevaRussian Federation
E. Z. Godina
Russian Federation
References
1. Beall C.M., Cavalleri G.L., Deng L., Elston R.C., Gao Y., Knight J., Li C., Li J.C., Liang Y., McCormack M., Montgomery H.E., Pan H., Robbins P.A., Shianna K.V., Tam S.C., Tsering N., Veeramah K.R., Wang W., Wangdui P., Weale M.E., Xu Y., Xu Z., Yang L., Zaman M.J., Zeng C., Zhang L., Zhang X., Zhaxi P., Zheng Y.T. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc. Natl Acad. Sci. USA. 2010;107(25):11459-11464. DOI 10.1073/pnas.1002443107
2. Billaut F., Gore C.J., Aughey R.J. Enhancing team-sport athlete performance: is altitude training relevant? Sports Med. 2012;42:751-67. DOI 10.2165/11634050- 000000000-00000
3. Bouchard C., Rankinen T., Chagnon Y.C., Rice T., Perusse L., Gagnon J., Borecki I., An P., Leon A.S., Skinner J.S., Wilmore J.H., Province M., Rao D.C. Genomic scan for maximal oxygen uptake and its response to training in the HERITAGE Family Study. J. Appl. Physiol. 2000;88:551-559.
4. Ema M., Taya S., Yokotani N., Sogawa K., Matsuda Y., Fujii-Kuriyama Y. A novel bHLH- PAS factor with close sequence similarity to hypoxia inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc. Natl Acad. Sci. USA. 1997;94:4273-4278.
5. Eynon N., Hanson E.D., Lucia A., Houweling P.J., Garton F., North K. N., Bishop D.J. Genes for elite power and sprint performance: ACTN3 leads the way. Sports Med. 2013;43:803-817. DOI 10.1007/s40279-013-0059-4
6. Formenti F., Constantin-Teodosiu D., Emmanuel Y., Cheeseman J., Dorrington K.L., Edwards L.M., Humphreys S.M., Lappin T.R., McMullin M.F., McNamara C.J., Mills W., Murphy J.A., O’Connor D. F., Percy M.J., Ratcliffe P.J., Smith T.G., Treacy M., Frayn K.N., Greenhaff P.L., Karpe F., Clarke K., Robbins P.A. Regulation of human etabolism by hypoxia-inducible factor. Proc. Natl Acad. Sci. USA. 2010;107(28):12722-12727. DOI 10.1073/pnas.1002339107
7. Ge R.L., Simonson T.S., Cooksey RC., Tanna U., Qin G., Huff C.D., Witherspoon D.J., Xing J., Zhengzhong B., Prchal J.T., Jorde L.B., McClain D.A. Metabolic insight into mechanisms of high-altitude adaptation in Tibetans. Mol. Genet. Metab. 2012;106(2):244-247. DOI 10.1016/j.ymgme.2012.03.003
8. Giaccia A.J., Simon M.C., Johnson R. The biology of hypoxia: the role of oxygen sensing in development, normal function, and disease. Genes Dev. 2004;18:2183-2194.
9. Henderson J., Withford-Cave J.M., Duffy D.L., Cole S.J., Sawyer N.A., Gulbin J.P., Hahn A., Trent R.J., Yu B. The EPAS1 gene influences the aerobic-anaerobic contribution in elite endurance athletes. Hum. Genet. 2005;118:416-423.
10. Kelly K.R., Williamson D.L., Fealy C.E., Kriz D.A., Krishnan R.K., Huang H., Ahn J., Loomis J.L., Kirwan J.P. Acute altitude-induced hypoxia suppresses plasma glucose and leptin in healthy humans. Metabolism. 2010;59(2):200-205. DOI 10.1016/j.metabol.2009.07.014
11. Kim J.W., Tchernyshyov I., Semenza G.L., Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3): 177-185.
12. Loboda A., Jozkowicz A., Dulak J. HIF-1 versus HIF-2–is one more important than the other? Vascul. Pharmacol. 2012;56:245-251. DOI 10.1016/j.vph.2012.02.006
13. Majmundar A.J., Wong W.J., Simon M.C. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell. 2010;40:294-309. DOI 10.1016/j.molcel.2010.09.022
14. Papandreou I., Cairns R.A., Fontana L., Lim A.L., Denko N.C. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187-197.
15. Scortegagna M., Morris M.A., Oktay Y., Bennett M., Garcia J.A. The HIF family member EPAS1/HIF-2alpha is required for normal hematopoiesis in mice. Blood. 2003;102:1634- 1640.
16. Takeda N., Maemura K., Imai Y., Harada T., Kawanami D., Nojiri T., Manabe I., Nagai R. Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circulation Res. 2004; 95:146-153.
17. Tian H., Hammer R.E., Matsumoto A.M., Russell D.W., McKnight S.L. The hypoxia- responsive transcription factor EPAS1 is essential for catecholamine homeostasis and protection against heart failure during embryonic development. Genes Dev. 1998;12:3320-3324.
18. Tian H., McKnight S.L., Russell D.W. Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72-82.
19. Voisin S., Cieszczyk P., Pushkarev V.P., Dyatlov D.A., Vashlyayev B. F., Shumaylov V.A., Maciejewska-Karlowska A., Sawczuk M., Skuza L., Jastrzebski Z., Bishop D.J., Eynon N. EPAS1 gene variants are associated with sprint/power athletic performance in two cohorts of European athletes. BMC Genomics. 2014;18(15):382. DOI 10.1186/1471-2164-15-382
20. Wada T. Transcription factor EPAS1 regulates insulin signaling pathway. Yakugaku Zasshi. 2007;127(1):143-151