Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The rate of weight gain and productivity of chicken broiler cross with various polymorphic types of myostatin gene

https://doi.org/10.18699/VJ16.154

Abstract

The search for single nucleotide polymorphisms (SNP) in the myostatin gene is a promising direction of research as this gene is involved in the development of important biological and productive traits in chicken. Using PCR-RFLP technique, an analysis of allele and genotype frequencies in Cornish chicken breed of G5 line of Smena-8 cross has been conducted. Two pairs of primers allowing PCR product to be obtained in the myostatin gene have been used. Two single nucleotide substitutions on exon 1 of the myostatin gene have been under investigation: G/A in MST2109 and G/С in MST2244. A signifiant predominance of deoxynucleotide G in MST2244 over C and deoxynucleotide A over G in MST2109 has been observed. Differences in productive traits between genotypes in MST2109 were not detected. Analysis of allelic variability by MST2244 locus showed statistically significant differences in live weight at the age of 7 days between CC and G2G2 genotypes (p < 0.01), CG2 and G2G2 (p < 0.05). G2G2 individuals (203.52 g) were significantly heavier than CC (179.5 g) and CG2 (193.95 g) chickens at the age of 7 days. Statistically significant differences between the CC and G2G2 genotypes in live weight at the age of 33 days have been revealed (p < 0.05). Thus, this research has led to a better understanding of allele frequencies in the myostatin gene in line G5 of Cornish breed. The results obtained will allow particular myostatin gene-based genotypes to be taken into account for accelerating the breeding process in the broiler poultry industry.

About the Authors

N. V. Dementeva
Russian Research Institute of Farm Animal Genetics and Breeding, Saint-Petersburg, Pushkin, Russia
Russian Federation


O. V. Mitrofanova
Russian Research Institute of Farm Animal Genetics and Breeding, Saint-Petersburg, Pushkin, Russia
Russian Federation


V. I. Tyshchenko
Russian Research Institute of Farm Animal Genetics and Breeding, Saint-Petersburg, Pushkin, Russia
Russian Federation


V. P. Terletskiy
Russian Research Institute of Farm Animal Genetics and Breeding, Saint-Petersburg, Pushkin, Russia
Russian Federation


A. F. Yakovlev
Russian Research Institute of Farm Animal Genetics and Breeding, Saint-Petersburg, Pushkin, Russia
Russian Federation


References

1. Baron E.E., Wenceslau A.A., Alvares L.E., Nones K., Ruy D.C., Schmidt G.S., Zanella E.L., Coutinho L.L., Ledur M.C. High level of polymorphism in the myostatin chicken gene. Proc. 7th World Congr. Genet. Appl. Livest. Prod. Montpellier. 19–23 August, 2002.

2. Dementeva N.V., Terletskiy V.P., Tyshchenko V.I., Yakovlev A.F. Use of DNA fingerprinting method for study of genetic divergence in populations of agricultural animals. Vestnik RASKhN = Herald of Russian Academy of Agricultural Science. 2003;1:79-80.

3. Grobet L., Poncelet D., Royo L.J., Brouwers B., Pirottin D., Michaux C., Ménissier F., Zanotti M., Dunner S., Georges M. Molecular definition of an allelic series of mutations disrupting the myostatin function and causing double muscling in cattle. Mammal. Genome. 1998;9(3):210-213.

4. Hu W., Chen S., Zhang R., Liu Y. Single nucleotide polymorphisms in the upstream regulatory region alter the expression of myostatin. In Vitro Cell. Dev. Biol. Anim. 2013;49(6):417-423. DOI 10.1007/s11626-013-9621-5

5. Kambadur R., Sharma M., Smith T.P.L., Bass J.J. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 1997;7(9):910-915.

6. McCroskery S., Thomas M., Maxwell L., Sharma M., Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J. Cell. Biol. 2003;162(6):1135-1147.

7. McPherron A.C., Lawler A.M., Lee S.J. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83-90.

8. McPherron A.C., Lee S.J. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl Acad. Sci. USA. 1997;94(123):12457- 12461.

9. Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., Kambadur R. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J. Biol. Chem. 2000;275(51): 40235-40243.

10. Tyshchenko V.I., Dementeva N.V., Terletskiy V.P., Yakovlev A.F. Evaluation of genetic variability in chicken populations on the basis of genomic fingerprinting. Selskokhozyaystvennaya biologiya = Agricultural Biology. 2002;6:43-46.

11. Yakovlev A.F., Terletskiy V.P., Sekste E.A., Tuchemskiy L.I., Emanuylova Zh.V. Impact of growth hormone gene on productive traits in chicken. Ptitsevodstvo = Poultry industry. 2013;1:2-4.

12. Ye X., Brown S.R., Nones K., Coutinho L.L., Dekkers J.C., Lamont S. J. Associations of myostatin gene polymorphisms with performance and mortality traits in broiler chickens. Genet. Sel. Evol. 2007;39(1): 73-89.

13. Zhang G.X., Zhao X.H., Wang J.Y., Ding F.X., Zhang L. Effect of exon 1 mutation in the myostatin gene on the growth traits of the Bian chicken. Anim. Genet. 2012;43(4):458-459. DOI 10.1111/j.1365-2052.2011.02274.x

14. Zhiliang G., Dahai Z., Ning L., Hui L., Xuemei D., Changxin W. The single nucleotide polymorphisms of the chicken myostatin gene are associated with skeletal muscle and adipose growth. Sci. China C. Life Sci. 2004;47(1):25-30.

15. Zhivotovsky L.A. Populyatsionnaya biometriya [Populational Biometry]. Moscow, Nauka, 1991.


Review

Views: 983


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)