The role of Pnut and its functional domains in Drosophila spermatogenesis
https://doi.org/10.18699/VJ16.104
Abstract
Drosophila Pnut protein belongs to the family of septins, conservative GTPases participating in cytokinesis and many more other fundamental cellular processes. Because of their filamentous appearance, membrane association and functions, septins are considered as the fourth component of the cytoskeleton, along with actin, microtubules and intermediate filaments. However, septins are much less studied than the other cytoskeleton elements. We had previously demonstrated that deletion of the peanut (pnut) gene leads to mitotic abnormalities in somatic cells. The goal of this work was to study the role of pnut in Drosophila spermatogenesis. We designed a construct for pnut RNA interference allowing pnut expression to be suppressed ectopically. We analyzed the effect of pnut RNA interference on Drosophila spermatogenesis. The most sensitive to Pnut depletion were germ line cells at the earliest stages of spermatogenesis: the suppression of pnut expression at these stages leads to male sterility as a result of immotile sperm. Testes of those sterile males did not show any significant meiotic defects; axonemes and mitochondria were normal. We also analyzed the effect of mutations in Pnut conservative domains on Drosophila spermatogenesis. Mutations in the GTPase domain resulted in cyst elongation defects. Deletions of the C-terminal domain led to abnormal testis morphology. Both GTPase domain and C-terminal domain mutant males were sterile and produced immotile sperm. To summarize, we showed that Pnut participates in spermiogenesis, that is, late stages of spermatogenesis, when major morphological changes in spermatocytes occur.
About the Authors
K. A. AkhmetovaRussian Federation
N. D. Dorogova
Russian Federation
E. U. Bolobolova
Russian Federation
I. N. Chesnokov
Russian Federation
S. A. Fedorova
Russian Federation
References
1. Akhmetova K., Balasov M., Huijbregts R.P.H., Chesnokov I. Functional insight into the role of Orc6 in septin complex filament formation in Drosophila. Mol. Biol. Cell. 2015;26(1):15-28. DOI 10.1091/mbc.E14-02-0734
2. Akhmetova K.A., Dorogova N.D., Chesnokov I.N., Fedorova S.A. The effect of peanut gene RNAi on Drosophila oogenesis. Genetika= Genetics (Moscow). 2015;51(9). (in print)
3. Akhmetova K.A., Fedorova S.A. Effect of mutations in the peanut gene on somatic and germ line cell division in Drosophila melanogaster. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2011;15(4):653-660.
4. Cao L., Ding X., Yu W., Yang X., Shen S., Yu L. Phylogenetic and evolutionary analysis of the septin protein family in metazoan. FEBS Lett. 2007;581:5526-5532. DOI 10.1016/j.febslet.2007.10.032
5. Casamayor A., Snyder M. Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol. Cell. Biol. 2003;23(8):2762-2777. DOI 10.1128/MCB.23.8.2762-2777.2003
6. Fabian L., Wei H.C., Rollins J., Noguchi T., Blankenship J.T., Bellamkonda K., Polevoy G., Gervais L., Guichet A., Fuller M.T., Brill J. A. Phosphatidylinositol 4,5-bisphosphate directs spermatid cell polarity and exocyst localization in Drosophila. Mol. Biol. Cell. 2010;21(9):1546-1555. DOI 10.1091/mbc.E09-07-0582
7. Huijbregts R.P., Svitin A., Stinnett M.W., Renfrow M.B., Chesnokov I. Drosophila Orc6 facilitates GTPase activity and filament formation of the septin complex. Mol. Biol. Cell. 2009;20:270-281. DOI 10.1091/mbc.E08-07-0754
8. Kissel H., Georgescu M.M., Larisch S., Manova K., Hunnicutt G.R., Steller H. The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev. Cell. 2005;8:353-364. DOI 10.1016/j.devcel.2005.01.021
9. Lhuillier P., Rode B., Escalier D., Lorès P., Dirami T., Bienvenu T., Gacon G., Dulioust E., Touré A. Absence of annulus in human asthenozoospermia: Case Report. Hum. Reprod. 2009;24(6):1296-1303. DOI 10.1093/humrep/dep020
10. McMurray M.A., Bertin A., Garcia G., Lam L., Nogales E., Thorner J. Septin filament formation is essential in budding yeast. Dev. Cell. 2011;20(4):540-549. DOI http://dx.doi.org/10.1016/j.devcel.2011.02.004
11. Mostowy S., Cossart P. Septins: the fourth component of the cytoskeleton. Nat. Rev. Mol. Cell Biol. 2012;13(3):183-194. DOI 10.1038/nrm3284
12. Neufeld T.P., Rubin G.M. The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins. Cell. 1994;77:371-379. DOI 10.1016/0092-8674(94)90152-X
13. Pertceva J.A., Dorogova N.V., Bolobolova E.U., Nerusheva O.O., Fedorova S.A., Omelyanchuk L.V. The role of Drosophila hyperplastic discs gene in spermatogenesis. Cell Biol. Int. 2010;10:991-996. DOI 10.1042/CBI20100105
14. Saarikangas J., Barral Y. The emerging functions of septins in metazoans. EMBO Rep. 2011;12(11):1118-1126. DOI 10.1038/embor. 2011.193
15. Sirajuddin M., Farkasovsky M., Hauer F., Kühlmann D., Macara I.G., Weyand M., Stark H., Wittinghofer A. Structural insight into filament formation by mammalian septins. Nature. 2007;449:311-315.DOI 10.1038/nature06052
16. Sirajuddin M., Farkasovsky M., Zent E., Wittinghofer A. GTPinduced conformational changes in septins and implications for function. Proc. Natl Acad. Sci. USA. 2009;106(39):16592-16597. DOI 10.1073/pnas.0902858106
17. Tanaka-Takiguchi Y., Kinoshita M., Takiguchi K. Septin-mediated uniform bracing of phospholipid membranes. Curr. Biol. 2009;19(2): 140-145. DOI 10.1016/j.cub.2008.12.030
18. Zent E., Wittinghofer A. Human septin isoforms and the GDP-GTP cycle. Biol. Chem. 2014;395:169-180. DOI 10.1515/hsz-2013-0268