Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Phosphorylation of histone H3Ser10 in plant cell division

https://doi.org/10.18699/VJ16.132

Abstract

Histones, the major protein components of chromatin, undergo post-translational modifications, which particularly affect the structural and functional organization of chromosomes. The most common post-translational modifications are phosphorylation, methylation, acetylation and ubiquitination. Histone phosphorylation occurs mainly at N-terminal tails of serines (Ser) and threonines (Thr), and coordinates various processes of mitotic and meiotic division. It has been shown that this type of modification is required for activation of transcription, DNA damage repair, recombination and also for chromosome condensation and segregation. Histone H3 is characterised by the presence of a large number of modification sites among the four core histones. In plants, phosphorylation of histone H3 at serine positions 10 and 28 and at threonine positions 3, 11, 32 and 133 is the most well studied. This review contains the most complete data on the spatial and temporal distribution of H3 phosphorylation of serine at position 10 (phH3Ser10) in mitosis and meiosis in different plant species. Most species are characterised by phosphorylation of the centromeric region in mitosis and second meiotic division, and by phosphorylation throughout the chromosomes in the first meiotic division. However, there are exceptions to the phH3Ser10 distribution in mosses and cestrum, as well as in species with holocentric chromosomes. There are contradictory data on the phH3Ser10 distribution in mitosis and meiosis in the same species. The functional significance of phH3Ser10 in cell division in plants is associated with the activity of the centromere, centromere cohesion and sister chromatid and chromosome segregation. We discuss the participation of currently known candidate kinases and phosphatases in the dynamics of H3Ser10 phosphorylation. The review provides an overview of the role of phH3Ser10 modification in the chromosome division and segregation in mitosis and meiosis.

About the Authors

D. B. Loginova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


O. G. Silkova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Bíró J., Farkas I., Domoki M., Ötvös K., Bottka S., Dombrádi V., Fehér A. The histone phosphatase inhibitory property of plant nucleosome assembly protein-related proteins (NRPs). Plant Physiol. Biochem. 2012;52:162-168. DOI 10.1016/j.plaphy.2011.12.010

2. Brasileiro-Vidal A.C., Brammer S., Puertas M.J., Zanatta A.C., Prestes A., Moraes- Fernandes M.I.B., Guerra M. Mitotic instability in wheat × Thinopyrum ponticum derivatives revealed by chromosome counting, nuclear DNA content and histone H3 phosphorylation pattern. Plant Cell Rep. 2005;24:172-178. DOI 10.1007/s00299-005- 0913-4

3. Cai X., Dong F., Edelmann R.E., Makaroff C.A. The Arabidopsis SYN1 cohesin protein is required for sister chromatid arm cohesion and homologous chromosome pairing. J. Cell Sci. 2003;116(14):2999- 3007. DOI 10.1242/jcs.00601

4. Caperta A.D., Rosa M., Delgado M., Karimi R., Demidov D., Viegas W., Houben A. Distribution patterns of phosphorylated Thr 3 and Thr 32 of histone H3 in plant mitosis and meiosis. Cytogenet. Genome Res. 2008;122:73-79. DOI 10.1159/000151319

5. Cobb J., Miyaike M., Kikuchi A., Handel M.A. Meiotic events at the centromeric heterochromatin: histone H3 phosphorylation, topoisomerase IIa localization and chromosome condensation. Chromosoma. 1999;108:412-425. DOI 10.1007/s004120050393

6. Demidov D., Schubert V., Kumke K., Weiss O., Karimi-Ashtiyani R., Buttlar J., Heckmann S., Wanner G., Dong Q., Han F., Houben A. Antiphosphorylated histone H2AThr120: a universal microscopic marker for centromeric chromatin of mono- and holocentric plant species. Cytogenet. Genome Res. 2014;143:150-156. DOI 10.1159/000360018

7. Demidov D., VanDamme D., Geelen D., Blattner F.R., Houben A. Identification and dynamics of two classes of Aurora-like kinases in Arabidopsis and other plants. Plant Cell. 2005;17:836-848. DOI 10.1105/tpc.104.029710

8. Dong Q., Han F. Phosphorylation of histone H2A is associated with centromere function and maintenance in meiosis. Plant J. 2012;71: 800-809. DOI 10.1111/j.1365- 313X.2012.05029.x

9. Feitoza L., Guerra M. Different types of plant chromatin associated with modified histones H3 and H4 and methylated DNA. Genetica. 2011;139:305-314. DOI 10.1007/s10709-011-9550-8

10. Fernandes T., Yuyama P.M., Moraes A.P., Vanzela A.L. An uncommon H3/Ser10 phosphorylation pattern in Cestrum strigilatum (Solanaceae), a species with B chromosomes. Genome. 2008;51(9):772-777. DOI 10.1139/G08-042

11. Fuchs J., Demidov D., Houben A., Schubert I. Chromosomal histone modification patterns – from conservation to diversity. Trends Plant Sci. 2006;11(4):199-208. DOI 10.1016/j.tplants.2006.02.008

12. Gao Z., Fu S., Dong Q., Han F., Birchler J.A. Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 2011;19:755-761. DOI 10.1007/s10577-011-9240-5

13. Gernand D., Demidov D., Houben A. The temporal and spatial pattern of histone H3 phosphorylation at serine 28 and serine 10 is similar in plants but differs between mono- and polycentric chromosomes. Cytogenet. Genome Res. 2003;101:172-176. DOI 10.1159/000074175

14. Guerra M., Brasileiro-Vidal A.C., Arana P., Puertas M.J. Mitotic microtubule development and histone H3 phosphorylation in the holocentric chromosomes of Rhynchospora tenuis (Cyperaceae). Genetica. 2006;126:33-41. DOI 10.1007/s10709-005- 1430-7

15. Guo X.W., Th’ng J.R.H., Swank R.A., Anderson H.J., Tudan C., Bradbury E.M., Roberge M. Chromosome condensation induced by fostriecin does not require p34CdC2 kinase activity and histone H1 hyperphosphorylation, but is associated with enhanced histone H2A and H3 phosphorylation. EMBO J. 1995;14(5):976-985.

16. Han F., Gao Z., Birchler J.A. Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell. 2009;21:1929-1939. DOI 10.1105/tpc.109. 066662

17. Han F., Lamb J.C., Birchler J.A. High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc. Natl Acad. Sci. USA. 2006;103:3238- 3243. DOI 10.1073/pnas.0509650103

18. Hendzel M.J., Wei Y., Mancini M.A., Van Hooser A., Ranalli T., Brinkley B.R., Bazett-Jones D.P., Allis C.D. Mitosis specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma. 1997; 106:348-360. DOI 10.1007/s004120050256

19. Houben A., Demidov D., Caperta A.D., Karimi R., Agueci F., Vlasenko L. Phosphorylation of histone H3 in plants–A dynamic affair. Bioch. Biophys. Acta. 2007;1769:308-315. DOI 10.1016/j.bbaexp. 2007.01.002

20. Houben A., Demidov D., Ruttena T., Scheidtmann K.H. Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res. 2005;109:148-155. DOI 10.1159/000082394

21. Houben A., Wako T., Furushima-Shimogawara R., Presting G., Kunzel G., Schubert I., Fukui K. Short communication: the cell cycle dependent phosphorylation of histone H3 is correlated with the condensation of plant mitotic chromosomes. Plant J. 1999;18:675-679.

22. Ito T. Role of histone modification in chromatin dynamics. J. Biochem. 2007;141:609-614. DOI 10.1093/jb/mvm091

23. Kaszas E., Cande W.Z. Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J. Cell Sci. 2000;113:3217-3226.

24. Kawabe A., Matsunaga S., Nakagawa K., Kurihara D., Yoneda A., Hasezawa S., Uchiyama S., Fukui K. Characterization of plant Aurora kinases during mitosis. Plant Mol. Biol. 2005;58:1-13. DOI 10.1007/s11103-005-3454-x

25. Kurihara D., Matsunaga S., Kawabe A., Fujimoto S., Noda M., Uchiyama S., Fukui K. Aurora kinase is required for chromosome segregation in tobacco BY-2 cells. Plant J. 2006;48:572-580. DOI 10.1111/j.1365-313X.2006.02893.x

26. Kurihara D., Matsunaga S., Omura T., Higashiyama T., Fukui K. Identification and characterization of plant Haspin kinase as a histone H3 threonine kinase. BMC Plant Biol. Database. 2011. DOI 10.1186/1471-2229-11-73

27. Li Y., Butenko Y., Grafi G. Histone deacetylation is required for progression through mitosis in tobacco cells. Plant J. 2005;41:346-352. DOI 10.1111/j.1365- 313X.2004.02301.x

28. Manzanero S., Arana P., Puertas M.J., Houben A. The chromosomal distribution of phosphorylated histone H3 differs between plants and animals at meiosis. Chromosoma. 2000;109:308-317. DOI 10.1007/s004120000087

29. Manzanero S., Rutten T., Kotseruba V., Houben A. Alterations in the distribution of histone H3 phosphorylation in mitotic plant chromosomes in response to cold treatment and the protein phosphatase inhibitor cantharidin. Chromosome Res. 2002:10:467-476. DOI 10.1023/A:1020940313841

30. Marcon-Tavares A.B., Felinto F., Feitoza L., Barros e Silva A.E., Guerra M. Different patterns of chromosomal histone H3 phosphorylation in land plants. Cytogenet. Genome Res. 2014;143:136-143. DOI 10.1159/000364815

31. Oliver C., Pradillo M., Corredor E., Cunado N. The dynamics of histone H3 modifications is species-specific in plant meiosis. Planta. 2013;238:23-33. DOI 10.1007/s00425-013-1885-1

32. Paula C.M.P., Techio V.H., Souza Sobrinho F., Freitas A.S. Distribution pattern of histone H3 phosphorylation at serine 10 during mitosis and meiosis in Brachiaria species. J. Genetics. 2013;92(2):259-266.DOI 10.1007/s12041-013-0261-z

33. Pedrosa A., Jantsch M.F., Moscone E.A., Ambros P.F., Schweizer D. Characterisation of pericentromeric and sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma. 2001;110:203-213. DOI 10.1007/s004120000125

34. Schroeder-Reiter E., Houben A., Wanner G. Immunogold labeling of chromosomes for scanning electron microscopy: A closer look at phosphorylated histone H3 in mitotic metaphase chromosomes of Hordeum vulgare. Chromosome Res. 2003;11:585-596. DOI 10.1023/A:1024952801846

35. Sveshnikov P.G., Malaytsev V.V., Bogdanova I.M., Solopova O.N. Vvedenie v molekulyarnuyu immunologiyu i gibridomnuyu tekhnologiyu [Introduction into Molecular Immunology and Hybridoma Technology]. Moscow, Moscow State Univ. Publ., 2006.

36. Wallace W., Schaefer L.H., Swedlow J.R. Artifacts and aberrations in deconvolution analysis. Olympus Microscopy Resource Center. 2012. available at http://www.olympusmicro.com/primer/digitalimaging/deconvolution/deconartifacts.html

37. Wang F., Higgins J.M.G. Histone modifications and mitosis: countermarks, landmarks, and bookmarks. Trends Cell Biol. 2013;23(4): 175-184. DOI 10.1016/j.tcb.2012.11.005

38. Wang W., Tang D., Luo Q., Jin Y., Shen Y., Wang K., Cheng Z. BRK1, a Bub1-related kinase, is essential for generating proper tension between homologous kinetochores at metaphase I of rice meiosis. Plant Cell. 2012;24:4961-4973. DOI 10.1105/tpc.112.105874

39. Wei Y., Mizzen C.A., Cook R.G., Gorovsky M.A., Allis D.C.D. Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc. Natl Acad. Sci. USA. 1998;95:7480-7484.

40. Wei Y., Yu L., Bowen J., Gorovsky M.A., Allis C.D. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell. 1999;97:99-109. DOI 10.1016/S0092-8674(00)80718-7

41. Zhang B., Dong Q., Su H., Birchler J.A., Han F. Histone phosphorylation: its role during cell cycle and centromere identity in plants. Cytogenet. Genome Res. 2014;143:144-149. DOI 10.1159/000360435

42. Zhang B., Lv Z., Pang J., Liu Y., Guo X., Fu S., Li J., Dong Q., Wu H-J., Gao Z., Wang X-J., Hana F. Formation of a functional maize centromere after loss of centromeric sequences and gain of ectopic sequences. Plant Cell. 2013;25:1979-1989. DOI 10.1105/tpc.113.110015


Review

Views: 1487


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)