Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The effect of space flight on genes expression in brain

https://doi.org/10.18699/VJ16.134

Abstract

Many serious adverse physiological changes occur during spaceflight, primarily due to microgravity. In search of underlying mechanisms, many experimental tools have been developed, ranging from microgravity modeling on Earth to space flight investigations, part of which is to study the expression of genes and proteins. Unlike bone and muscle tissue, molecular changes in nerve cells during spaceflight are practically unexplored. This review aims at summarizing the recent advances in identifying gene and protein expression changes of nervous system cells under microgravity conditions. To a large extent, this review will focus on the results of the Bion-M1 biosatellite. We have for the first time revealed dopamine and serotonin microgravityresponsive genes (tyrosine hydroxylase, catechol-Omethyltransferase, and D1 receptor in the nigrostriatal system; D1 and 5-HT2A receptors in the hypothalamus; and monoamine oxidase A in the frontal cortex). Decreased genetic control of the dopamine system may contribute to the spaceflight-induced locomotor impairment and dyskinesia described for both animals and humans. Also, the system of neuronal apoptosis is activated under the influence of microgravity as evidenced by changes in the expression of antiapoptotic protein Bcl-XL in the hippocampus and hypothalamus. The long spaceflight produced dysregulation in the genetic control of genes encoding GDNF and CDNF neurotrophic factors. Because they play a crucial role in the protection and maintenance of dopaminergic neurons, reducing their expression may be one of the reasons for the negative impact of spaceflight on the brain dopamine system. Thus, the data obtained from the flight of the Bion-M1 biosatellite for the first time allowed for creating a molecular genetic basis for the currently known neurophysiological mechanisms of adaptation of the central nervous system to the state of weightlessness.

About the Authors

A. S. Tsybko
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


T. V. Ilchibaeva
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


N. K. Popova
Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
Russian Federation


References

1. Airavaara M., Harvey B.K., Voutilainen M.H., Shen H., Chou J., Lindholm P., Lindahl M., Tuominen R.K., Saarma M., Hoffer B., Wang Y. CDNF protects the nigrostriatal dopamine system and promotes recovery after MPTP treatment in mice. Cell Transplant. 2012;21:1213-1223.

2. Andreev-Andrievskiy A., Popova A., Boyle R., Alberts J., Shenkman B., Vinogradova O., Dolgov O., Anokhin K., Tsvirkun D., Soldatov P., Nemirovskaya T., Ilyin E., Sychev V. Mice in Bion-M 1 space mission: training and selection. PLoS One. 2015;9. Available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104830/ (Accessed 18 August 2014).

3. Andreev-Andrievskiy A.A., Shenkman B.S., Popova A.S., Dolgov O.N., Anokhin K.B., Soldatov P.E., Vinogradova O.L., Ilyin E.A., Sychev V.N. Experimental studies with mice on the program of the biosatellite BION-M1 mission. Aviakosmicheskaya i ekologicheskaya meditsina = Aerospace and environmental medicine. 2014;48(1):14-27.

4. Andressoo J.O., Saarma M. Signalling mechanisms underlying development and maintenance of dopamine neurons. Curr. Opin. Neurobiol. 2008;18:297-306.

5. Atomi Y. Gravitational effects on human physiology. Subcell. Biochem. 2015;72:627- 59.

6. Aubert A.E., Beckers F., Verheyden B. Cardiovascular function and basics of physiology in microgravity. Acta. Cardiol. 2005;60:129-151.

7. Baisch F.J. Head down tilt combined with breathing assistance by the ‘‘IRON LUNG.’’ A new simulation model for cardiovascular deconditioning, skin, and kidney function in weightlessness? J. Gravit. Physiol. 2002;9:67-68.

8. Basso N., Bellows C.G., Heersche J.N. Effect of simulated weightlessness on osteoprogenitor cell number and proliferation in young and adult rats. Bone 2005;36:173-183.

9. Blaber E., Marçal H., Burns B.P. Bioastronautics: the influence of microgravity on astronaut health. Astrobiology. 2010;10:463-473.

10. Chen J., Liu R., Yang Y., Li J., Zhang X., Li J., Wang Z., Ma J. The simulated microgravity enhances the differentiation of mesenchymal stem cells into neurons. Neurosci. Lett. 2011;505(2):171-175.

11. Clément G., Ngo-Anh J.T. Space physiology II: adaptation of the central nervous system to space flight – past, current, and future studies. Eur. J. Appl. Physiol. 2013;113:1655-1672.

12. Clément G., Reschke M.F. Neuroscience in Space. N.Y., Springer, 2008.

13. Convertino V.A., Bloomfield S.A., Greenleaf J.E. An overview of the issues: physiological effects of bed rest and restricted physical activity. Med. Sci. Sports Exerc. 1997;29:187-190.

14. Cordero-Llana O., Houghton B.C., Rinaldi F., Taylor H., Yáñez-Muñoz R.J., Uney J.B., Wong L.F., Caldwell M.A. Enhanced efficacy of the CDNF/MANF family by combined intranigral overexpression in the 6-OHDA rat model of Parkinson’s disease. Mol. Ther. 2015;23: 244-254.

15. Culman J., Kvetnansky T., Serova L.V., Tigranjan R.A., Macho L. Serotonin in individual hypothalamic nuclei of rats after space flight on biosatellite Cosmos 1129. Acta Astronaut. 1985;12:373-376.

16. Damjanoska K.J., Heidenreich B.A., Kindel G.H., D’Souza D.N., Zhang Y., Garcia F., Battaglia G., Wolf W.A., Van de Kar L.D., Muma N.A. Agonist-induced serotonin 2A receptor desensitization in the rat frontal cortex and hypothalamus. J. Pharmacol. Exp. Ther. 2004;309(3):1043-1050.

17. Day J.R., Frank A.T., O’Callaghan J.P., DeHart B.W. Effects of microgravity and bone morphogenetic protein II on GFAP in rat brain. J. Appl. Physiol. 1998;85:716-722.

18. DeFelipe J., Arellano J.I., Merchán-Pérez A., González-Albo M.C., Walton K., Llinás R. Spaceflight induces changes in the synaptic circuitry of the postnatal developing neocortex. Cereb. Cortex. 2002;12(8):883-891.

19. Degan P., Sancandi M., Zunino A., Ottaggio L., Viaggi S., Cesarone F., Pippia P., Galleri G., Abbondandolo A. Exposure of human lymphocytes and lymphoblastoid cells to simulated microgravity strongly affects energy metabolism and DNA repair. J. Cell Biochem. 2005; 94:460-469.

20. De la Torre G.G. Cognitive neuroscience in space. Life (Basel). 2014;4: 281-294.

21. Delp M.D. Unraveling the complex web of impaired wound healing with mechanical unloading and physical deconditioning. J. Appl. Physiol. 2008;104:1262-1263.

22. Elinder F., Akanda N., Tofighi R., Shimizu S., Tsujimoto Y., Orrenius S., Ceccatelli S. Opening of plasma membrane voltage dependent anion channels (VDAC) precedes caspase activation in neuronal apoptosis induced by toxic stimuli. Cell Death Differ. 2005;12:1134-1140.

23. Felix K., Wise K., Manna S., Yamauchi K., Wilson B.L., Thomas R.L., Kulkarni A., Pellis N.R., Ramesh G.T. Altered cytokine expression in tissues of mice subjected to simulated microgravity. Mol. Cell Biochem. 2004;266:79-85.

24. Freed L.E., Pellis N., Searby N., de Luis J., Preda C., Bordonaro J., Vunjak- Novakovic G. Microgravity cultivation of cells and tissues. Gravit. Space Biol. Bull. 1999;12:57-66.

25. Frigeri A., Iacobas D.A., Iacobas S., Nicchia G.P., Desaphy J.F., Camerino D.C., Svelto M., Spray D.C. Effect of microgravity on gene expression in mouse brain. Exp. Brain Res. 2008;191(3):289-300.

26. Fujii M.D., Patten B.M. Neurology of microgravity and space travel. Clin. 1992;10(4):999-1013.

27. Grace A.A. Dopamine. Neuropsychopharmacology: The Fifth Generation of Progress. Eds. K.L. Davis, D. Charney, J.T. Coyle, C. Nemeroff. Lippincott, Williams and Wilkins, Philadelphia, Pennsylvania, 2002:119-132.

28. Hughes P.E., Alexi T., Walton M., Williams C.E., Dragunow M., Clark R.G., Gluckman P.D. Activity and injury-dependent expression of inducible transcription factors, growth factors and apoptosisrelated genes within the central nervous system. Prog. Neurobiol. 1999;57:421-450.

29. Hughes-Fulford M. Physiological effects of microgravity on osteoblast morphology and cell biology. Adv. Space Biol. Med. 2002;8: 129-157.

30. Infanger M., Ulbrich C., Baatout S., Wehland M., Kreutz R., Bauer J., Grosse J., Vadrucci S., Cogoli A., Derradji H., Neefs M., Kusters S., Spain M., Paul M., Grimm D. Modeled gravitational unloading induced downregulation of endothelin-1 in human endothelial cells. J. Cell Biochem. 2007;101:1439-1455.

31. Kang C.Y., Li T., Zou L., Yuan M., Li T.Z., Guo Y.H., Wang Y., Liu C.T. Salidroside inhibits clinorotation-induced apoptosis in pulmonary microvascular endothelial cells. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:649-652.

32. Klein-Nulend J., Bacabac R.G., Veldhuijzen J.P., Van Loon J.J. Microgravity and bone cell mechanosensitivity. Adv. Space Res. 2003;32: 1551-1559.

33. Konstantinova N.A., Buravkova L.B., Manuilova E.S., Arsen’eva E.L., Grivennikov I.A. Effects of clinostating on the neuronal differentiation of embryonic stem cells from mouse strain R1. Aviakosmicheskaya i ekologicheskaya meditsina = Aerospace and environmental medicine. 2010;44(3):65-67.

34. Kossmehl P., Shakibaei M., Cogoli A., Infanger M., Curcio F., Schonberger J., Eilles C., Bauer J., Pickenhahn H., Schulze-Tanzil G., Paul M., Grimm D. Weightlessness induced apoptosis in normal thyroid cells and papillary thyroid carcinoma cells via extrinsic and intrinsic pathways. Endocrinology. 2003;144:4172-4179.

35. Kramar E.A., Bernard J.A., Gall C.M., Lynch G. Integrins modulate fast excitatory transmission at hippocampal synapses. J. Biol. Chem. 2003;270:10722-10730.

36. Krasnov I.B. Hyponoradrenergic syndrome of weightlessness: its manifestations in mammals and possible mechanism. Physiologist. 1991; 34(Suppl. 1):23-26.

37. Krasnov I.B. Gravitational neuromorphology. Adv. Space Biol. Med. 1994;4:85-110.

38. Kvetnansky R., Culman J., Serova L.V., Tigranjan R.A., Torda T., Macho L. Catecholamines and their enzymes in discrete brain areas of rats after space flight on biosatellites Cosmos. Acta Astronaut. 1983; 10:295-300.

39. Lelkes P.I., Galvan D.L., Hayman G.T., Goodwin T.J., Chatman D.Y., Cherian S., Garcia R.M., Unsworth B.R. Simulated microgravity conditions enhance differentiation of cultured PC12 cells towards the neuroendocrine phenotype. In Vitro Cell Dev. Biol. Anim. 1998; 34:316-325.

40. Lindholm P., Saarma M. Novel CDNF/ MANF family of neurotrophic factors. Dev. Neurobiol. 2010;70:360-371.

41. Lindholm P., Voutilainen M.H., Laurén J., Peränen J., Leppänen V.M., Andressoo J.O., Lindahl M., Janhunen S., Kalkkinen N., Timmusk T., Tuominen R.K., Saarma M. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448:773-77.

42. Monticone M., Liu Y., Pujic N., Cancedda R. Activation of nervous system development genes in bone marrow derived mesenchymal stem cells following spaceflight exposure. J. Cell Biochem. 2010; 111(2):442-452.

43. Morey-Holton E.R. Globus R.K. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight. Bone. 1998;22:83-88.

44. Morey-Holton E.R., Globus R.K., Kaplansky A., Durnova G. The hindlimb unloading rat model: literature overview, technique update and comparison with space flight data. Adv. Space Biol. Med. 2005; 10:7-40.

45. Nakamura H., Kumei Y., Morita S., Shimokawa H., Ohya K., Shinomiya K. Antagonism between apoptotic (Bax / Bcl-2) and antiapoptotic (IAP) signals in human osteoblastic cells under vectoraveraged gravity condition. Ann. N. Y. Acad. Sci. 2003;1010:143-147.

46. Naumenko V.S., Kulikov A.V., Kondaurova E.M., Tsybko A.S., Kulikova E.A., Krasnov I.B., Shenkman B.S., Sychev V.N., Bazhenova E.Y., Sinyakova N.A., Popova N.K. Effect of actual long-term spaceflight on BDNF, TrkB, p75, BAX and BCL-XL genes expression in mouse brain regions. Neuroscience. 2015;284:730-736.

47. Nichols H.L., Zhang N., Wen X. Proteomics and genomics of microgravity. Physiol. Genomics. 2006;26:163-171.

48. Оganov V.S., Bogomolov V.V. Костная система человека в условиях невесомости. Human bone system in microgravity: review of research data, hypotheses and predictability of state in extended (exploration) missions. Aviakosmicheskaya i ekologicheskaya meditsina = Aerospace and environmental medicine. 2009;1:3-12.

49. Оganov V.S., Potapov A.N. Functional plasticity of mammalian skeletal muscles under microgravity. Aviakosmicheskaya i ekologicheskaya meditsina = Aerospace and environmental medicine. 2006;1:27-36.

50. Pascual A., Hidalgo-Figueroa M., Gómez-Díaz R., López-Barneo J. GDNF and protection of adult central catecholaminergic neurons. J. Mol. Endocrinol. 2011;46:83-92.

51. Pascual A., Hidalgo-Figueroa M., Piruat J.T., Pintado C.O., Gómez-Díaz R., López- Barneo J. Absolute requirement of GDNF for adult catecholaminergic neuron survival. Nat. Neurosci. 2008;11:755-761.

52. Popova N.K., Kulikov A.V., Kondaurova E.M., Tsybko A.S., Kulikova E.A., Krasnov I.B., Shenkman B.S., Bazhenova E.Y., Sinyakova N.A., Naumenko V.S. Risk neurogenes for long-term spaceflight: dopamine and serotonin brain system. Mol. Neurobiol. 2014;51(3): 1443-1451.

53. Popova N.K., Naumenko V.S. 5-HT1A receptor as a key player in the brain 5-HT system. Rev. Neurosci. 2013;24(2):191-204.

54. Regnard J., Heer M., Drummer C., Norsk P. Validity of microgravity simulation models on earth. Am. J. Kidney Dis. 2001;38:668-674.

55. Rucci N., Migliaccio S., Zani B.M., Taranta A., Teti A. Characterization of the osteoblast-like cell phenotype under microgravity conditions in the NASA-approved Rotating Wall Vessel bioreactor (RWV). J. Cell Biochem. 2002;85:167-179.

56. Saavedra A., Baltazar G., Duarte E.P. Driving GDNF expression: the green and the red traffic lights. Prog. Neurobiol. 2008;86:186-215.

57. Santucci D., Kawano F., Ohira T., Terada M., Nakai N., Francia N., Alleva E., Aloe L., Ochiai T., Cancedda R., Goto K., Ohira Y. Evaluation of gene, protein and neurotrophin expression in the brain of mice exposed to space environment for 91 days. PLoS One 2012;7. Available at: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0040112/ (Accessed 09 July 2012).

58. Sarkar P., Sarkar S., Ramesh V., Hayes B.E., Thomas R.L., Wilson B.L., Kim H., Barnes S., Kulkarni A., Pellis N., Ramesh G.T. Proteomic analysis of mice hippocampus in simulated microgravity environment. J. Proteome Res. 2006;5(3):548- 553.

59. Sarkar P., Sarkar S., Ramesh V., Kim H., Barnes S., Kulkarni A., Hall J.C., Wilson B.L., Thomas R.L., Pellis N.R., Ramesh G.T. Proteomic analysis of mouse hypothalamus under simulated microgravity. Neurochem. Res. 2008;33(11):2335-2341.

60. Slenzka K. Neuroplasticity changes during space flight. Adv. Space Res. 2003;31:1595-1604.

61. Sychev V.N., Ilyin E.A., Yarmanova E.N., Rakov D.V., Ushakov I.B., Kirilin A.N., Orlov O.I., Grigoriev A.I. The BION-M1 project: overview and first results. Aviakosmicheskaya i ekologicheskaya meditsina = Aerospace and environmental medicine. 2014;48(1):7-14.

62. Trappe T., Trappe S., Lee G., Widrick J., Fitts R., Costill D. Cardiorespiratory responses to physical work during and following 17 days of bed rest and spaceflight. J. Appl. Physiol. 2006;100:951-957.

63. Tsybko A.S., Ilchibaeva T.V., Kulikov A.V., Kulikova E.A., Krasnov I.B., Sychev V.N., Shenkman B.S., Popova N.K., Naumenko V.S. Effect of microgravity on glial cell line-derived neurotrophic factor and cerebral dopamine neurotrophic factor gene expression in the mouse brain. J. Neurosci. Res. 2015;93(9):1399-1404.

64. Unsworth B.R., Lelkes P.I. Growing tissues in microgravity. Nat. Med. 1998;4:901- 907.

65. Uva B.M., Masini M.A., Sturla M., Bruzzone F., Giuliani M., Tagliafierro G., Strollo F. Microgravity-induced apoptosis in cultured glial cells. Eur. J. Histochem. 2002a;46(3):209-214.

66. Uva B.M., Masini M.A., Sturla M., Prato P., Passalacqua M., Giuliani M., Tagliafierro G., Strollo F. Clinorotation-induced weightlessness influences the cytoskeleton of glial cells in culture. Brain Res. 2002b;934(2):132-139.

67. Uva B.M., Masini M.A., Sturla M., Tagliafierro G., Strollo F. Microgravity-induced programmed cell death in astrocytes. J. Gravit. Physiol. 2002c;9(1):275-276.

68. Van de Kar L.D., Javed A., Zhang Y., Serres F., Raap D.K., Gray T.S. 5-HT2A receptors stimulate ACTH, corticosterone, oxytocin, renin, and prolactin release and activate hypothalamic CRF and oxytocinexpressing cells. J. Neurosci. 2001;21(10):3572-3579.

69. Wang J., Zhang J., Bai S., Wang G., Mu L., Sun B., Wang D., Kong Q., Liu Y., Yao X., Xu Y., Li H. Simulated microgravity promotes cellular senescence via oxidant stress in rat PC12 cells. Neurochem. Int. 2009;55(7):710-716.

70. Wise K.C., Manna S.K., Yamauchi K., Ramesh V., Wilson B.L., Thomas R.L., Sarkar S., Kulkarni A.D., Pellis N.R., Ramesh G.T. Activation of nuclear transcription factor- kappaB in mouse brain induced by a simulated microgravity environment. In Vitro Cell Dev. Biol. Anim. 2005;41(3-4):118-123.

71. Zhang Y., Damjanoska K.J., Carrasco G.A., Dudas B., D’Souza D.N., Tetzlaff J., Garcia F., Hanley N.R., Scripathirathan K., Petersen B.R., Gray T.S., Battaglia G., Muma N.A., Van de Kar L.D. Evidence that 5-HT2A receptors in the hypothalamic paraventricular nucleus mediate neuroendocrine responses to (-)DOI. J. Neurosci. 2002;22(21):9635-9642.


Review

Views: 932


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)