1. Балабан П.М., Захаров И.С. Обучение и развитие: общая основа двух явлений. М.: Наука, 1992.
2. Гринкевич Л.Н. Эпигенетика и формирование долговременной памяти. Рос. физиол. журн. им. И.М. Сеченова. 2012а;98(5):553-574.
3. Гринкевич Л.Н. Исследование метилирования гистона Н3 при формировании долговременной памяти. Рос. физиол. журн. им. И.М. Сеченова. 2012б;98(9):1111-1118.
4. Гринкевич Л.Н., Воробьева О.В. Роль модуляторного медиатора серотонина в индукции эпигенетических процессов при формировании долговременной памяти у Нelix. Вавиловский журнал генетики и селекции. 2014;18(2):298-307.
5. Abel T., Zukin R.S. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr. Opin. Pharmacol. 2008; 8(1):57-64.
6. Akbarian S., Huang H.S. Epigenetic regulation in human brain-focus on histone lysine methylation. Biol. Psychiatry. 2009;65(3):198-203.
7. Balaban P.M., Chase R. Interrelationships of the emotionally positive and negative regions of the brain of the edible snail. Neurosci. Behav. Physiol. 1991;21(2):172-180.
8. Belardetti F., Kandel E.R., Siegelbaum S.A. Neuronal inhibition by the peptide FMRFamide involves opening of S K+ channels. Nature. 1987;325(7000):153-156.
9. Berger S.L. The complex language of chromatin regulation during transcription. Nature. 2007;447:407-412.
10. Danilova A.B., Grinkevich L.N. Inability of juvenile snails for longterm memory formation depends on acetylation status of histone H3 and can be improved by NaB treatment. PLoS ONE. 2012;7(7): e41828:1-8.
11. Danilova A.B., Kharchenko O.A., Shevchenko K.G., Grinkevich L.N. Histone H3 acetylation is asymmetrically induced upon learning in identified neurons of the food aversion network in the mollusk Helix lucorum. Front. Behav. Neurosci. 2010;4(180):1-7.
12. Elekes K., Ude J. An immunogold electron microscopic analysis of FMRFamide-like immunoreactive neurons in the CNS of Helix pomatia: ultrastructure and synaptic connections. J. Neurocytol. 1993; 22(1):1-13.
13. Fioravante D., Smolen P.D., Byrne J.H. The 5-HT- and FMRFa-activated signaling pathways interact at the level of the Erk MAPK cascade: potential inhibitory constraints on memory formation. Neurosci Lett. 2006;396(3):235-240.
14. Grinkevich L.N., Lisachev P.D., Kharchenko O.A., Vasil’ev G.V. Expression of MAP/ERK kinase cascade corresponds to the ability to develop food aversion in terrestrial snail at different stages of ontogenesis. Brain Res. 2008;1187:12-19.
15. Grinkevich L.N., Vorobiova O.V. Role of modulatory mediator serotonin in induction of epigenetic processes during long-term memory formation in Helix. Russian Journal of Genetics: Applied Research. 2014;4(6):526-532.
16. Guan Z., Giustetto M., Lomvardas S. Kim J.H., Miniaci M.C., Schwartz J.H., Thanos D., Kandel E.R. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell. 2002;111(4):483-493.
17. Gupta S., Kim S.Y., Artis S., Molfese D.L., Schumacher A., Sweatt J.D., Paylor R.E., Lubin F.D. Histone methylation regulates memory formation. J. Neurosci. 2010;30(10):3589-3599.
18. Gupta-Agarwal S., Franklin A.V., Deramus T., Wheelock M., Davis R.L., McMahon L.L., Lubin F.D. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci. 2012;32(16):5440-5453.
19. Gupta-Agarwal S., Jarome T.J., Fernandez J., Lubin F.D. NMDA receptor-and ERK-dependent histone methylation changes in the lateral amygdala bidirectionally regulate fear memory formation. Learn. Mem. 2014;21(7):351-362.
20. Hunter R.G., McCarthy K.J., Milne T.A., Pfaff D.W., McEwen B.S. Regulation of hippocampal H3 histone methylation by acute and chronic stress. Proc. Natl Acad. Sci. USA. 2009;106(49):20912-20917.
21. Jarome T.J., Lubin F.D. Histone lysine methylation: critical regulator of memory and behavior. Rev. Neurosci. 2013;24(4):375-387.
22. Kandel E. The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol. Brain. 2012;5(14):1-12.
23. Kobayashi S., Hattori M., Elekes K., Ito E., Matsuo R. FMRFamide regulates oscillatory activity of the olfactory center in the slug. Eur. J. Neurosci. 2010;32(7):1180-1192.
24. Korneev S.A., Straub V., Kemenes I., Korneeva E.I., Ott S.R., Benjamin P.R., O’Shea M. Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation. J. Neurosci. 2005; 25(5):1188-1192.
25. Kurita M., Holloway T., García-Bea A., Kozlenkov A., Friedman A.K., Moreno J.L., Heshmati M., Golden S.A., Kennedy P.J., Takahashi N., Dietz D.M., Mocci G., Gabilondo A.M., Hanks J., Umali A., Callado L.F., Gallitano A.L., Neve R.L., Shen L., Buxbaum J.D., Han M.H., Nestler E.J., Meana J.J., Russo S.J., González-Maeso J. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat. Neurosci. 2012;15(9):1245-1254.
26. Levenson J.M., Sweatt J.D. Epigenetic mechanisms: a common theme in vertebrate and invertebrate memory formation. Cell Mol. Life Sci. 2006;63:1009-1016.
27. Li C., Timbers T.A., Rose J.K., Bozorgmehr T, Rankin C.H. The FMRFamide-related neuropeptide FLP-20 is required in the mechanosensory neurons during memory for massed training in C. elegans. Learn. Mem. 2013;20(2):103-108.
28. Monsey M.S., Ota K.T., Akingbade I.F., Hong E.S., Schafe G.E. Epigenetic alterations are critical for fear memory consolidation and synaptic plasticity in the lateral amygdale. PLoS One. 2011;6(5): 1-13.
29. Montarolo P.G., Kandel E.R., Schacher S. Long-term heterosynaptic inhibition in Aplysia. Nature. 1988;333(6169):171-174.
30. Morse S.J., Butler A.A., Davis R.L., Soller I.J., Lubin F.D. Environmental enrichment reverses histone methylation changes in the aged hippocampus and restores age-related memory deficits. Biology (Basel). 2015;4(2):298-313.
31. Raffa R.B. The action of FMRFamide (Phe-Met-Arg-Phe-NH2) and related peptides on mammals. Peptides. 1988;9(4):915-922.
32. Rőszer T., Bánfalvi G. FMRFamide-related peptides: anti-opiate transmitters acting in apoptosis. Peptides. 2012;34(1):177-185.
33. Rőszer T., Jenei Z., Gáll T., Nagy O., Czimmerer Z., Serfözö Z., Elekes K., Bánfalvi G. A possible stimulatory effect of FMRFamide on neural nitric oxide production in the central nervous system of Helix lucorum. Brain Behav. Evol. 2004;63(1):23-33.
34. Telegdy G., Bollók I. Amnesic action of FMRFamide in rats. Neuropeptides. 1987;10(2):157-163.
35. Toffolo E., Rusconi F., Paganini L., Tortorici M., Pilotto S., Heise C., Verpelli C., Tedeschi G., Maffioli E., Sala C., Mattevi A., Battaglioli E. Phosphorylation of neuronal Lysine-Specific Demethylase 1LSD1/KDM1A impairs transcriptional repression by regulating interaction with CoREST and histone deacetylases HDAC1/2. J. Neurochem. 2014;128(5):603-616.
36. Wood M.A., Hawk J.D., Abel T. Combinatorial chromatin modifications and memory storage: A code for memory. Learn. Mem. 2006; 13:241-244.
37. Xu J., Andreassi M. Reversible histone methylation regulates brain gene expression and behavior. Horm. Behav. 2011;59(3):383-392.
38. Zatylny-Gaudin C., Favrel P. Diversity of the RFamide peptide family in mollusks. Front. Endocrinol. (Lausanne). 2014;5(178):1-14.