Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Theoretical aspects of heterosis

https://doi.org/10.18699/VJ16.174

Abstract

The phenomenon of heterosis, known as superior performance of hybrid organism compared with either of their parents, has been exploited by agricultural practices in the production of various crops since the beginning of the last century; however, its genetic basis has remained obscure. With experimental data obtained from the study of maize hybrids, and mathematical calculations, some genetic models have been proposed to explain heterosis from various types of gene interaction, such as dominance, over-dominance and epistasis. However, any of the proposed concepts has weak points, which place limitations on the possibility of overall interpretation of heterotic response in F1. In this review we gather a brief account of findings from various studies for critical evaluation of the main theoretical concepts based on the information accumulated to date by genetics and molecular biology and focused on particular mechanisms acting for specific traits. We discussed some aspects concerning the role of mutation loads in the formation of heterotic phenotype. Also, we gathered a brief account of findings for interpretation of genetic effects due to linkage and non-allelic genes’ interactions that make nuances to analysis of dominance and over-dominance. We have provided information about combining ability, its practical application in the context of the concept of heterotic groups. Here we also discussed some aspects of “genotype–environment” interaction. Recent advancements in genetics and molecular biology indicate the importance of various types of gene action for heterosis and confirm the necessity of systemlevel approaches to understanding this unique phenomenon.

About the Authors

L. V. Khotyleva
Institute of Genetics and Cytology of National Academy of Sciences of Belarus
Belarus
Minsk


A. V. Kilchevsky
Institute of Genetics and Cytology of National Academy of Sciences of Belarus
Belarus
Minsk


M. N. Shapturenko
Institute of Genetics and Cytology of National Academy of Sciences of Belarus
Belarus
Minsk


References

1. Akinwale R.O., Badu-Apraku B., Fakorede M.A.B., Vroh-Bi I. Heterotic grouping of tropical early-maturing maize inbred lines based on combining ability in Striga- infested and Striga-free environments and the use of SSR markers for genotyping. Field Crops Research. 2014;156:48-62. DOI 10.1016/j.fcr.2013.10.015.

2. Belyaev D.K., Evsikov V.I., Shumny V.K. Genetic and breeding aspects of monogenic heterosis. Genetika = Genetics (Moscow). 1968;(12): 47-52.

3. Bingham E.T. Role of chromosome blocks in heterosis and estimates of dominance and overdominance: Concept and breeding of heterosis in crop plant. Crop Sci. Soc. Amer. 1998;25:71-87. DOI 10.2135/cssaspecpub25.c6.

4. Bingham E.T., Groose R.W., Woodfield D.R., Kidwell K.K. Complementary gene interactions in alfalfa are greater in autotetraploids than diploids. Crop Sci. 1994;34:823-829. DOI 10.2135/cropsci1994.0011183X003400040001x.

5. Birchler J.A., Auger D.L., Riddle N.C. In search of the molecular basis of heterosis: The Plant Cell. 2003;15(10):2236-2239. DOI http://dx.doi.org/10.1105/tpc.151030.

6. Birchler J.A., Johnson A.F., Veitia R.A. Kinetics genetics: Incorporating the concept of genomic balance into an understanding of quantitative traits. Plant Science. 2016;245:128-134. DOI 10.1016/j.plantsci.2016.02.002.

7. Birchler J.A., Veitia R.A. The gene balance hypothesis: Implications for gene regulation, quantitative traits and evolution. New Phytol. 2010;186(1):54-62. DOI 10.1111/j.1469-8137.2009.03087.x.

8. Bormotov V.E., Turbin N.V. Eksperimentalnaya poliploidiya i geterozis u sakharnoy svekly [Experimental Polyploidy and Heterosis in Sugar Beet]. Minsk, 1971.

9. Bruce A.B. The Mendelian theory of heredity and the augmentation of vigor. Science. 1910;32:627-628. DOI 10.1126/science.32.827.627-a.

10. Busbice T.H., Wilsie C.P. Inbreeding depression and heterosis in autotetraploids with application to Medicago sativa L. Euphytica. 1966; 15:52-67. DOI 10.1007/BF00024079.

11. Charlesworth B., Hughes K. Age-specific inbreeding depression and components of genetic variance in relation to the evolution of senescence. Proc. Natl Acad. Sci. USA. 1996;93:6140-6145. DOI 10.1073/pnas.93.12.6140.

12. Charlesworth D., Morgan M.T., Charlesworth B. Inbreeding depression, genetic load and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution. 1990;44:1469-1489. DOI 10.2307/2409330.

13. Charlesworth D., Willis J. The genetics of inbreeding depression. Nature Reviwes. Genetics. 2009;10:783-796. DOI 10.1038/nrg2664.

14. Cheng S.H., Zhuang J.Y., Fan Y.Y., Du J.H., Cao L.Y. Progress in research and development on hybrid rice: a superdomesticate in China. Ann. Bot. 2007;100(5):959-966. DOI 10.1093/aob/mcm121.

15. Collins G.N. Dominance and vigor of first generation hybrids. Am. Nat. 1921;55(637):116-133.

16. Crabb A.R. The hybrid-corn markers: prophets of plenty. Rutgers University Press, New Brunswick, NJ, 1947.

17. Crow J.F. Dominance and overdominance. Ed. J.W. Gowen. Heterosis. Iowa State College Press, Ames, 1952;282-297.

18. Crow J.F. Mutation, mean fitness, and genetic load. Oxf. Surv. Evol. Boil. 1993;9:3-42.

19. Crow J.F. 90 years ago: The beginning of hybrid maize. Genetics. 1998;148:923-928. http://www.ncbi.nlm.nih.gov/pubmed/9539413.

20. Darwin Ch. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom. 2d ed. London, John Murray, 1878. (Russ ed. Darwin Ch. Deystvie perekrestnogo opyleniya i samoopyleniya v rastitelnom mire. Leningrad, Selkhozgiz Publ., 1939.).

21. Davenport C.B. Degeneration, albinism and inbreeding. Science. 1908;28:454-455. DOI 10.1126/science.28.718.454-b.

22. Dollinger E.J. Effects of visible recessive alleles on vigor characteristics in a maize hybrid. Genetics. 1985;25:819-821. DOI 10.2135/cropsci1985.0011183X002500050022x.

23. Duvick D.N. Heterosis: feeding people and protecting natural resources. Eds J.G. Coors, S. Pandey. Proc. of the international symposium on the genetics and exploitation of heterosis in crops, CIMMYT, Mexico City, 17–22 Aug. 1999. ASA, CSSA, SSSA, Madison, 1999; 19-29.

24. Duvick D.N. Biotechnology in the 1930s: the development of hybrid maize. Nat. Rev. Genet. 2001;2:69-74. DOI 10.1038/35047587.

25. Dyer K.A., Charlesworth B., Jaenike J. Chromosome-wide linkage disequilibrium as a consequence of meiotic drive. PNAS. 2007;104(5): 1587-1592. DOI 10.1073/pnas.0605578104.

26. East E.M., Hayes H.K. Heterozygosis in evolution and in plant breeding. U.S. Dept. Agric. Plant Industr. Bull. 1912;243:58.

27. Eberhart S.A., Russell W.A. Stability parameters for comparing varieties. Crop Sci. 1966;6(1):36-40. DOI 10.2135/cropsci1966.0011183X000600010011x.

28. Essad S., Maunory C. Kinetic and instantaneous characteristics of mitosis related to heterosis and inbreeding in Zea mays. J. Ann. Amelior. Plant. 1979;29(6):689-698.

29. Feng Sh., Chen X., Wu Sh., Chen X. Recent advances in understanding plant heterosis. Agricultural Science. 2015;6:1033-1038. DOI 10.4236/as.2015.69098.

30. Finlay К.W., Wilkinson G.N. The analysis of adaptation in plant-breeding programme.

31. Austral. J. Agric. Res. 1963;14(6):742-754.

32. Fisher R.A. The evolution of dominance. Biol. Rev. Cambrige Phil. Soc. 1931;6:345-368.

33. Fox C.W., Scheibly K.L., Reed D.H. Experimental evolution of the genetic load and its implications for the genetic basis of inbreeding depression. Evolution. 2008;62:2236-2249. DOI 10.1111/j.1558-5646. 2008.00441.x.

34. Fu D., Xiao M., Hayward A., Fu Y., Liu G., Jiang G., Zhang H. Utilization of crop heterosis: a review. Euphytica. 2014;197:161-173. DOI 10.1007/s10681-014-1103-1107.

35. Fu T.D. Considerations on heterosis utilization in rapeseed (Brassica napus). 16th Australian research assembly on Brassicas. Ballarat, 2009.

36. Glemin S., Bataillon Th., Ronfort J., Mignot A., Olivieri I. Inbreeding Depression in Small Populations of Self-Incompatible Plants. Genetics. 2001;159:1217-1229.

37. Goodnight C.J. Epistasis and heterosis. Genetic and exploitation of heterosis in crop. Madison (Wisconsin, USA), 1999;59-68.

38. Goff S., Zhang Q. Heterosis in elite hybrid rice: speculation on the genetic and biochemical mechanisms. Current Opinion Plant Biology. 2013;16:221-227. DOI 10.1016/j.pbi.2013.03.009.

39. Gore M.A., Chia J.M., Elshire R.J., Sun Q., Ersoz E.S., Hurwitz B.L., Peiffer J.A., McMullen M.D., Grills G.S., Ross-Ibarra J., Ware D.H., Buckler E.S. A first-generation haplotype map of maize. Science. 2009;326:11-15. DOI 10.1126/science.1177837.

40. Graham G.I., Wolff D.E., Stubber C.W. Characterization of a yield quantitative trait locus on chromosome five of maize by fine mapping. Crop Science.1997;37:1601-1610. DOI 10.2135/cropsci1997.0011183X003700050033x.

41. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian J. Biol. Sci. 1956;9:463-493.

42. Griffing B., Langridge I. Statistical genetics and plant breeding. Washington, 1963;982:368-394.

43. Gustafson A. The effect of heterozygosity on viability and vigor. Hereditas. 1946;32:263-286.

44. Hageman R.H., Leng E.R., Dudley J.W. Biochemical approach to corn breeding. Advan. Agron. 1967;19:45-86.

45. Hoffmann A.A., Rieseberg L.H. Revisiting the Impact of Inversions in Evolution: From Population Genetic Markers to Drivers of Adaptive Shifts and Speciation? Ann. Rev. Ecology, Evolution, Systematics. 2008;39:21-42. DOI 10.1146/annurev.ecolsys.39.110707. 173532.

46. Hoisington D., Khairallah M., Reeves T., Ribaut J.M., Skovmand B., Taba S., Warburton M. Plant genetic resources: what can they contribute toward increased crop productivity? Proc. Natl Acad. Sci. USA. 1999;96(11):5937-5943.

47. Hollick J.B., Chandler V.L. Epigenetic allelic states of a maize transcriptional regulatory locus exhibit overdominant gene action. Genetics. 1998;150:891-897. PMCID: PMC1460365.

48. Hua J., Xing Y., Wu W., Xu C., Sun X., Yu S., Zhang Q. Single-locus heterotic effects and dominance by dominance interactions can adequately explain the genetic basis of heterosis in an elite rice hybrid. Proc. Natl Acad. Sci. USA. 2003;100(5):2574-2579. DOI 10.1073/pnas.0437907100.

49. Hull F.H. Reccurent selection for overdominance. Ed. L.W. Cowen. Heterosis. Iowa State College Press, Ames, 1952:451-474.

50. Jones D.F. Dominance of linked factors as a means of accounting for heterosis. Genetics. 1917;2:466-479. PMCID: PMC1091241.

51. Kaminskaya L.N. Rekkurentnaya selektsiya [The Recurrent Selection]. Minsk, 1985.

52. Keeble F., Pellew C. The mode of inheritance of stature and of time of flowering in peas (Pisum sativum). J. Genet. 1910;1:47-56. DOI 10.1007/BF02981568.

53. Khotyleva L.V., Razumovich A.N., Titok V.V. Bioenergeticheskie protsessy pri geterozise [Bioenergy Processes in Heterosis]. Minsk, 1991.

54. Khotyleva L.V., Tarutina L.A. Nonallelic interactions and heterosis in corn: Book of abstracts of International symposium “The genetics and exploitation of heterosis in crops”. Mexico, 1997:146-147.

55. Khotyleva L.V., Tarutina L.A. Genetika geterozisa [The genetics of heterosis]. Kil’chevskiy A.V., Khotyleva L.V. (Eds.) Geneticheskie osnovy selektsii rasteniy [Genetic Basis of Plant Breeding]. Tom 1: Obshchaya genetika rasteniy [Vol. 1: General Plant Genetics]. Minsk, 2008;1:81-173.

56. Khotyleva L.V., Tarutina L.A., Kapusta I.B., Mishin L.A. Epistaz i geterozis u gibridov teplichnogo tomata. Agroekologiya [Epistasis and heterosis in F1 hybrids in tomato. Agroecology]. Sbornik nauchnykh trudov “Ekologicheskie osnovy plodoovoshchevodstva” [ Collection of Scientific Papers “Ecological bases of horticulture”]. Gorki, 2005;2:143-146.

57. Kilchevsky A.V. Integrated evaluation of the environment as a background for the selection in breeding. Doklady Akademii nauk BSSR = Reports of the National Academy of Sciences of Belarus. 1986;30(9):846-849.

58. Kilchevsky A.V., Khotyleva L.V. Method of evaluation of adaptive ability and stability of genotypes, the differentiating ability of environment. Report 1. Validation of the method. Genetika = Genetics (Moscow). 1985;21(9):1481-1490.

59. Kil’chevskiy A.V., Khotyleva L.V., eds. Geneticheskie osnovy selektsii rasteniy [Genetic Basis of Plant Breeding]. Tom 1: Obshchaya genetika rasteniy [Vol. 1: General Plant Genetics]. Minsk, 2008.

60. Kil’chevskiy A.V., Khotyleva L.V., eds. Geneticheskie osnovy selektsii rasteniy [Genetic Basis of Plant Breeding]. Tom 4: Biotekhnologiya v selektsii rasteniy. Genomika i geneticheckaya inzheneriya [Vol. 4: Biotechnology in Plant Breeding. Genomics and Genetic Engineering]. Minsk, 2014.

61. Kirkpatrick M. How and Why Chromosome Inversions Evolve. Plos Biology. 2010;8(9):e1000501. DOI 10.1371/journal.pbio.1000501.

62. Krieger U., Lippman Z.B., Zamir D. The flowering gene single flower truss drives heterosis for yield in tomato. Nature Genetics. 2010;42:459-463. DOI 10.1038/ng.550.

63. Kusterer B., Muminovic J., Utz H. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis. Genetics. 2007;175(4):2009-2017. DOI 10.1534/genetics .106.069005.

64. Latter B., Mulley J., Reid D., Pascoe L. Reduced genetic load reveald by slow inbreeding in Drosophila melanogaster. Genetics. 1998; 139:287-297.

65. Li Z., Luo L., Mei H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics. 2001;158(4):1755-1771. PMCID: PMC1461764.

66. Lippman Z.B., Zamir D. Heterosis: revisiting the magic. Trends Gen. 2007;23:60-66. DOI 10.1016/j.tig.2006.12.006.

67. Loomis R.S., Williams W.A., Hall A.E. Agricultural productivity. Ann. Rev. Plant Physiol. 1971;22:431-468.

68. Mangelsdorf A.J. Gene interaction in heterosis: Heterosis. Ames: Iowa State College Press, 1952:321-329.

69. Mather K. The balance of polygenic combinations. J. Genet. 1942;43: 309-336.

70. Mather K. Polygenic inheritance and natural selection. Biol. Rev. 1943; 18:32-64.

71. Mather K. The genetical basis of heterosis. Proc. Roy. Soc., ser. B. 1955;144:915.

72. Matzinger D., Kemothorne O. The modified diallel table with partial inbreeding and interaction with environment. Genetics. 1956;41: 822-833.

73. McCune A., Fuller R., Aquilina A., Dawley R., Fadool J., Houle D., Travis J., Kondrashov A. A low genomic number of recessive lethals in natural populations of bluefin killifish and zebrafish. Science. 2002;296:2398-2401. DOI 10.1126/science.1071757.

74. Mcmullen M.D., Kresovich S., Villeda H.S., Bradbury P., Li H., Sun Q., Flint-Garcia S., Thornsberry J., Acharya C., Bottoms C., Brown P., Browne C. Genetic properties of the maize nested association mapping population. Science. 2009;325:737-740. DOI 10.1126/science.1174320.

75. Melchinger A.E. Optimum prediction of three-way crosses from single crosses from single crosses in maize (Zea mays L.). Theor. Appl. Genet. 1987;74:339-345. DOI 10.1007/BF00274716.

76. Melchinger A.E., Gumber R.K. Overview of heterosis and heterotic crops in agronomic crops. Eds K.L. Lamkey, J.E. Staub. Concepts and breeding of heterotic crop plants. Crop Science Society of America, Madison, 1998;29-44. DOI 10.2135/cssaspecpub25.c3.

77. Melchinger A.E., Piepho H.P., Utz H.F. Genetic basis of heterosis for growth-related traits in Arabidopsis investigated by testcross progenies of near-isogenic lines reveals a significant role of epistasis. Genetics. 2007a;177(3):1827-1837. DOI 10.1534/genetics.107. 080564.

78. Melchinger A.E., Utz H.F., Piepo H.P., Zeng Z.-B., Schon C.C. The role of epistasis in the manifestation of heterosis: A systems-oriented approach. Genetics. 2007b;177:1815-1825. DOI 10.1534/genetics.107.077537.

79. Ohnishi O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. I. Frequency of chlorophyll-deficient mutants in Japanese populations. Jpn. J. Genet. 1982;57:623-639. DOI 10.1266/jjg.57.623.

80. Ohnishi O. Population genetics of cultivated buckwheat, Fagopyrum esculentum Moench. III. Frequency of sterility mutants in Japanese populations. Jpn. J. Genet. 1985;60:391-404. DOI http://doi.org/10.1266/jjg.60.391.

81. Ong-Abdullah M., Ordway J.M., Jiang N., Martienssen R. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525(7570):533-537. DOI 10.1038/nature15365.

82. Pashkar S.I. K biokhimicheskoy diagnostike geterozisa, TsMS i poliploidii u kukuruzy v protsesse selektsii: Fiziologiya rasteniy v pomoshch selektsii [Biochemical Diagnosis of Heterosis, CMS, and Polyploidy in Maize Breeding: Plant Physiology for Breeding]. Moscow, 1974:161-177.

83. Phillips P.C. Epistasis – the essential role of gene interactions in the structure and evolution of genetic systems. Nature Rev. Gen. 2008; 9:855-867. DOI 10.1038/nrg2452.

84. Redei G.P. Single locus heterosis. Mol. Gen. Genom. 1962;93: 164-170.

85. Reif J.C., Hallauer A.R., Melchinger A.E. Heterosis and heterotic pattern in Maize. Maydica. 2005;50:215-223.

86. Reif J.C., Kusterer B., Piepho H.-P., Meyer R.C., Altmann Th., Schön Ch.C., Melchinger A.E. Unraveling Epistasis With Triple Testcross Progenies of Near- Isogenic Lines. Genetics. 2009;181: 247-257. DOI 10.1534/genetics.108.093047.

87. Rice J.S., Dudley J.W. Gene effects responsible for inbreeding depression in autotetraploid maize. Crop Science. 1974;14:390-393. DOI 10.2135/cropsci1974.0011183X001400030015x.

88. Schon C.C., Dhillon B.S., Utz H.F., Melchinger A.E. High congruency of QTL positions for heterosis of grain yield in three crosses of maize. Theor. Appl. Genet. 2010;120(2):321-332. DOI 10.1007/s00122-009-1209-9.

89. Schwartz D., Laughner W.J. A molecular basis for heterosis. Science. 1969;166(3905):626-627. DOI 10.1126/science.166.3905.626.

90. Semel Y., Nissenbaum J., Menda N., Zinder M., Krieger U., Issman N., Pleban T., Lippman Z., Gur A., Zamir D. Overdominant quantitative trait loci for yield and fitness in tomato. Proc. Natl Acad. Sci. USA. 2006;103:12981-12986. DOI 10.1073/pnas.0604635103.

91. Shapturenko M.N., Tarutina L.A., Mishin L.A., Kilchevsky A.V., Khotyleva L.V. DNA divergence as a criterion of a sweet pepper (Capsicum annuum L.) selection for heterosis. Rus. J. Genetics. 2014;50(2):123-130. DOI 10.1134/S1022795414020148.

92. Shapturenko M.N., Tarutina L.A., Mishin L.A., Kubrak S.V., Kilchevskiy A.V., Khotyleva L. The possibilities of the prediction of the genetic potential of the tomato (Solanum lycopersicum L.) F1 based on the assessment of a simple sequence research polymorphism. Rus. J. Genetics: Applied Research. 2015;5(5):486-493. DOI 10.1134/S207905971505010X.

93. Shull G.H. The composition of a field of maize. Amer. Breeders Assoc. Rep. 1908;4:296-301. http://old.weedtowonder.org/hybrid/papers/.

94. Shull G.H. Duplicated genes for capsule form in Bursa bursapastoris. Zeitshritft indiktive Abstammungs-, Vererbungslehre. 1914;12:97-149.

95. Shull G.H. Beginnings of the heterosis concept: J.W. Gowen (Ed.). Heterosis. Iowa State College Press, Ames, IA, 1952;14-48.

96. Shumny V.K., Sokolov V.A., Vershinin A.V. Geterozis i mekhanizmy sverkhdominirovaniya [Heterosis and overdominance mechanisms]. Geterozis [Heterosis]. Minsk, Nauka i tekhnika Publ., 1982;109-141.

97. Singh R., Low E.-T., Ooi L., Ong-Abdullah M., Ting N.-Ch., Nagappan J., Nookiah R., Amiruddin M., Rosli R., Manaf M., Chan K.- L., Halim M., Azizi N., Lakey N., Smith, S. Budiman M., Hogan M., Bacher B., Brunt A., Wang Ch., Ordway J., Sambanthamurthi R., Martienssen R. The oil palm SHELL gene controls oil yield and encodes a homologue of SEEDSTICK. Nature. 2013;500:340-344. DOI 10.1038/nature12356.

98. Sprague G.F., Russell W.A., Penny L.H., Horner T.W. Effects of epistasis on grain yield of maize. Crop Science. 1962;2:205-220.

99. Sprague G.F., Tatum L.A. General vs specific combining ability in single crosses of corn. J. Amer. Soc. Agron. 1942;34:923-932.

100. Springer N., Stupar R. Allelic variation and heterosis in maize: How do two halves make more than whole? Genome Res. 2007;17:264-275. DOI 10.1101/gr.5347007.

101. Srivastava H.K. Heterosis and complementation of isolated mitochondria from severel wheat varieties. Indian J. Exp. Biol. 1974; 12(1):79-81.

102. Stuber C.W., Lincoln S.E., Wolff D.W., Helentjaris T., Lander E.S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics. 1992;132:823-839.

103. Sved J.A. An estimate of heterosis in Drosophila melanogaster. Genet. Res. 1971;18:97-105.

104. Tai G.С. Genotypic stability analysis and its application to potato regional trial. Grop Sci. 1971;11(2):184-194.

105. Tarutina L.A., Khotyleva L.V. Vzaimodeystvie genov pri geterozise [Gene Interaction in Heterosis]. Minsk, 1990.

106. Tarutina L.A., Khotyleva L.V., Mishin L.A., Poskannaya S.I., Kapusta I.B. Relationship of heterosis and nonallelic interaction in F1 hybrid progeny of tomatoes. Doklady Akademii nauk BSSR = Reports of the National Academy of Sciences of Belarus. 1996;40(6):72-75.

107. Tarutina L.A., Poskannaya S.I., Kapusta I.B., Mishin L.I., Khotyleva L.V. Genetic control of the character fruit weight per plant in sweet pepper in the diallel cross: materials of International scientific conference “Plant genefund accumulation evaluation and protection in the botanical gardens” (1-2 july 1999, Vilnius). Vilnius, 1999;157-159.

108. The hybrid wheat website. http://www.hybridwheat.net/.

109. Titok V.V. Bioenergy basis for the formation of heterosis in crops. Materialy VIII s’ezda BOGiS “Genetika i selektsiya v XXI veke” [Proc. VIII Congress BSGB “Genetics and breeding in the XXI Century”]. Minsk, 2002;163-165.

110. Troyer A.F., Wellin E.J. Heterosis Decreasing in Hybrids: Yield Test Inbreds. Crop Science. 2009;49:1969-1976. DOI 10.2135/cropsci2009.04.0170.

111. Turbin N.V. Geterozis. Teoriya i metody prakticheskogo ispolzovaniya [Heterosis. The Theory and Methods of Practical Use]. Minsk, 1961.

112. Turbin N.V., Khotyleva L.V., Tarutina L.A. Diallelnyy analiz v selektsii rasteniy [Diallel Analysis in Plant Breeding]. Minsk, 1974.

113. Turbin N.V., Palilova A.N. Geneticheskie osnovy tsitoplazmaticheskoy muzhskoy sterilnosti u rasteniy [Genetic Basis of Cytoplasmic Male Sterility in Plants]. Minsk, 1975.

114. Turbin N.V., Tarutina L.A., Khotyleva L.V. Comparative evaluation of methods of combining ability analysis in plants. Genetika = Genetics (Moscow). 1966;2(8):8-18.

115. Wang J., Hill W.G., Charlesworth D., Charlesworth B. Dynamics of inbreeding depression due to deleterious mutations in small populations: I. Mutation parameters and inbreeding rate. Genet. Res. 1999; 74:165-178.

116. Wang Y., Mette M., Miedaner Th., Gottwald M., Wilde P., Reif J., Zhao Y. The accuracy of prediction of genomic selection in elite hybrid rye populations surpassed the accuracy of marker-assisted selection and is equally augmented by multiple field evaluation locations and test years. BMS Genomics. 2014;15:556. DOI 10.1186/1471-2164-15-556.

117. Willis J.H. The role of genes of large effect on inbreeding depression in Mimulus guttatus. Evolution. 1999;53:1678-1691. DOI 10.2307/2640431.

118. Wolf D.P., Hallauer A.R. Triple testcross analysis to detect epistasis in maize. Crop Science. 1997;37(3):763-770. DOI 10.2135/cropsci1997.0011183X003700030012x.

119. Wricke G. Über eine Methode zur Erfassung der ökologischen Sfeubreite in Feldsuchungen. 2. Pflanzenzuchtung. 1962;47(l):92-96.

120. Zhuchenko A.A. Ekologicheskaya genetika kulturnykh rasteniy [Ecological Genetics of Cultivated Plants]. Kishinev, 1980.


Review

Views: 1762


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)