Preview

Vavilov Journal of Genetics and Breeding

Advanced search

CRISPR/Cas9, a universal tool for genomic engineering

https://doi.org/10.18699/VJ16.175

Abstract

The CRISPR/Cas9 system was initially described as an element of archeal and bacterial immunity, but gained much attention recently for its outstanding ability to be programmed to target any genomic loci through a short 20-nucleotide sgRNA region. Here we review some modern applications of the CRISPR/Cas9 system. First, we describe the basic mechanism of the CRISPR/Cas9 DNA recognition and binding, focusing in particular on its off-target activity. The CRISPR/Cas9 off-target activity refers to a non-specific recognition of genomic sites that have partial homology with sgRNA, occasionally resulting in unwanted mutations throughout the genome. We also note some recent improvements for enhancing Cas9 specificity or adding new functions to the system. Since Cas9-related hype is mostly driven by its remarkable potential for gene therapy and genome engineering, the latest CRISPR/Cas9 applications in these areas are also covered in our review. For instance, the CRISPR/Cas9 was recently used to control HIV infection and to repair genetic abnormalities, such as Duchenne muscular dystrophy or retinitis pigmentosa, both in cell cultures and rodent models. A programmable nature of CRISPR/Cas9 facilitates the creation of transgenic organisms through sitespecific gene mutations, knock-ins or large chromosomal rearrangements (deletions, inversions and duplications). CRISPR/Cas9 proved to be especially useful in pronuclear microinjections of farm animals as well, having strong impact on biotechnology. In addition, we review Cas9-augmented genetic screens that allow an unbiased search for new genes and pathways involved in a plethora of biological aspects, owing to Cas9 efficiency and versatility. Finally, we argue that gene drivers based on CRISPR/ Cas9 represent a powerful tool to modify ecosystems in the nearest future.

About the Authors

A. V. Smirnov
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


A. M. Yunusova
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


V. A. Lukyanchikova
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


N. R. Battulin
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


References

1. Tanksley S.D. Molecular markers in plant breeding. Plant Mol. Biol. Reports. 1983;1:3-8.

2. Arbuzova V.S., Ermakova M.F., Popova R.K. Studies of monosomic lines of cv. Saratovskaya 29 on productivity and grain technological properties. EWAC Newsletter. Proc. 11th EWAC Conf., Novosibirsk, Russia, 24–28 July, 2000. Eds T.A. Pshenichnikova, A.J. Worland, 2001;80-82.

3. Asplund L., Bergkvist G., Leino M.W., Westerbergh A., Weih M. Swedish spring wheat varieties with the rare high grain protein allele of NAM-B1 differ in leaf senescence and grain mineral content. PLoS ONE. 2013;8(3):e59704. DOI 10.1371/journal.pone.0059704.

4. Tanksley S.D., Young N.D., Paterson A.H., Bonierbale M.W. RFLP mapping in plant breeding: new tools for an old science biotechnology. Nature Biotechnol. 1989;7:257-264.

5. Baenziger P.S., Wesenberg D.M., Smail V.M., Alexander W.L., Schaeffer G.W. Agronomic performance of wheat doubled haploid lines derived from cultivars by anther culture. Plant Breeding. 1989;103: 101-109.

6. Tarkowski C., Otlowska-Miazga D. Location of genes controlling the quantitative level of protein in kernels of winter wheat, Luna variety. Genetica polonica. 1976;17(3):319.

7. Balyan H.S., Gupta P.K., Kumar S., Dhariwal R., Jaiswal V., Tyagi S., Agarwal P., Gahlaut V., Kumari S. Genetic improvement of grain protein content and other health- related constituents of wheat grain. Plant Breeding. 2013;132:446-457.

8. Timonova E.M., Leonova I.N., Röder M.S., Salina E. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol. Breeding. 2013;31:123-136.

9. Beckmann J.S., Soller M. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genet. 1983;67:35-43.

10. Tranquilli G., Lijavetzky D., Muzzi G., Dubcovsky J. Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol. General Genet. 1999;262:846-850.

11. Tsilo T.J., Nygard G., Khan Kh., Simsek S., Hareland G., Chao Sh., Anderson J.A. Molecular genetic mapping of QTL associated with flour water absorption and farinograph related traits in bread wheat. Euphytica. 2013;194:293-302. DOI 10.1007/s10681-013-0906-2.

12. Bespalova L.A., Vasilyev A.V., Ablova I.B., Filobok V.A., Khudokormova Zh.N., Davoyan R.O., Davoyan E.R., Karlov G.I., Soloviev A.A., Divashuk M.G., Mayer N. K., Dudnikov M.V., Mironenko N.V., Baranova O.A. The use of molecular markers in wheat breeding at the Lukyanenko Agricultural Research Institute. Russ. J. Gen.: Appl. Res. 2012;2:286-290.

13. Biffen R.H. On the inheritance of strength in wheat. J. Agric. Sci. 1908;II:88-101.

14. Turner M., Mukai Y., Leroy P., Charef B., Appels R., Rahman S. The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome. 1999;42(6):1242-1250.

15. Borrelli G.M. Troccoli A., Di Fonzo N., Fares C. Durum wheat lipoxygenase activity and other quality parameters that affect pasta color. Cereal Chemistry. 1999;76(3):335-340.

16. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Sciense. 2006;314:1298-1301.

17. Urbanovich O.Yu., Kozlovskaya Z.A., Khatskevich A.A., Kartel N.A. Molecular methods in apple breeding for resistance to rosy leafcurling aphid. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2013;5:54-60.

18. Brumlop S., Finckh M.R. Applications and potentials of marker assisted selection (MAS) in plant breeding. Final report of the F+E project “Applications and Potentials of Smart Breeding” (FKZ 350 889 0020) on behalf of the Federal Agency for Nature Conservation (ISBN 978-3-89624-033-0), Bonn, Germany, 2011.

19. Usenko N., Safianov V. Problems of Kuzbass bakers under the new conditions. Khleboprodukty = Bakery Products. 1996;8:9-11.

20. Burr B., Evola S.V., Burr F.A., Beckmann J.S. The application of restriction fragment length polymorphism to plant breeding. In: J.K. Setlow et al. (eds) Genetic Engineering. New York: Plenum Press, 1983;45-59.

21. Usenko N., Serdyukova Yu. Regional grain fund as a mechanism for implementing the cooperation between business and government. Khleboprodukty = Bakery Products. 2005;6:2-3.

22. Carrera A., Echenique V., Zhang W., Helguera M., Manthey F., Schrager A., Picca A., Cervigni G., Dubcovsky J. A deletion at the Lpx- B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum). J. Cereal Science. 2007;45:67-77.

23. Vishwakarma M.K., Mishra V.K., Gupta P.K., Yadav P.S., Kumar H., Joshi A.K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 2014;1:60-67.

24. Chang C., Zhang H.P., Xu J., You M.S., Li B.Y., Liu G.T. Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat. Euphytica. 2007;154:181-193.

25. Vrinten P., Nakamura T., Yamamori M. Molecular characterization of waxy mutations in wheat. Mol. General Gen. 1999; 261(3):463-471.

26. Charmet G., Storlie E. Implementation of genome-wide selection in wheat. Russ. J. Genet.: Appl. Res. 2012;2:298-303.

27. Waga J., Skoczowski A. Development and characteristics of ω-gliadinfree wheat Genotypes. Euphytica. 2014;195:105-116.

28. Chen F., He Z.H., Xia X.C. Xia L.Q., Zhang X.Y., Lillemo M., Morris C.F. Molecular and biochemical characterization of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor. Appl. Genet. 2006;112:400-409.

29. Wang L., Li G., Xia X., He Z., Mu P. Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars. Euphytica. 2008;164:745-752.

30. Cornish G.B., Békés F., Eagles H.A., Payne P.I. Prediction of dough properties for bread wheats. In: Gliadin and Glutenin. The unique balance of wheat quality. Ed.: C. Wrigley, F. Békés, W. Bushuk. AACC International. 2006;243-279.

31. William H., Trethowan R., Crosby-Galvan E. Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica. 2007;157:307-319.

32. Dahinden I., von Büren M., Lüthy J. A quantitative competitive PCR system to detect contamination of wheat, barley or rye in gluten-free food for coeliac patients. Eur. Food Res.Technol. 2001;212:228-233.

33. Worzella W.W. The inheritance of quality in Trumbull and Michikof varieties of winter wheat. J. Agr. Res. 1934;49(8):705-714.

34. Davoyan E.R., Bespalova L.A., Davoyan R.O., Zubanova Yu.S., Mikov D.S., Filobok V.A., Khudokormova J.N. Use of molecular markers in wheat breeding for resistance to leaf rust at the Lukyanenko Research Institute of Agriculture. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2014;18:732-738.

35. Worzella W.W. Inheritance and interrelationship of components of quality, cold resistance and morphological characters in wheat hybrids. J. Agr. Res. 1942;65(11):501-522.

36. De Pace C., Snidaro D., Ciaffi M., Vittori D., Ciofo A., Cenci A., Tanzarella O.A., Qualset C.O., Scarascia Mugnozza G.T. Introgression of Dasypyrum villosum chromatin into common wheat improves grain protein quality. Euphytica. 2001;117:67-75.

37. Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publications to practice. Crop Science. 2008;48:391-407.

38. Deckard E.L., Joppa L.R., Hammond J.J., Hareland G.A. Grain protein determinants of the Langdon durum-diccoides chromosome substitution lines. Crop Science. 1996;36(6):1513-1516.

39. Yamamori M., Quynh N.T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor. Appl. Genet. 2000;100: 32-38.

40. Defekty khleba. Sayt professional’nykh khlebopekov i konditerov [Defects of bread. Internet-portal of professional bakers and confectioners]. Available at: http://hlebinfo.ru/defektyi-hleba.html. (accessed 26 November 2015).

41. Zanetti S., Winzeler M., Feuillet C., Keller B., Messmer M. Genetic analysis of bread-making quality in wheat and spelt. Plant Breeding. 2001;120:13-19.

42. Distelfeld A., Uauy C., Fahima T., Dubcovsky J. Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol. 2006;169:753-763.

43. Zhang F., Chen F., Wu P., Zhang N., Cui D. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2015; 128:1467-1479.

44. Dobrovolskaya O., Saleh U., Malysheva-Otto L., Röder M.S., Börner A. Rationalising germplasm collections: a case study for wheat. Theor. Appl. Genet. 2005;111:1322-1329.

45. Zhang X., Tian J.C. The color advantage of Chinese wheat with high whiteness and analysis of factors affecting color formation. Scientia Agricultura Sinica. 2008;41:347-353.

46. Eagles H.A., Bariana H.S., Ogbonnaya F.C., Rebetzke G.J., Hollamby G.J., Henry R.J., Henschke P.H., Carter M. Implementation of markers in Australian wheat breeding. Australian J. Agricultur. Res. 2001;52:1349-1356.

47. Zheng W.Y., Wang F., Si H.Q., Zhang W.M., Yao D.N. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat. Sci. Agricultura Sinica. 2013;46(6):1087-1094.

48. Eagles H.A., Cane K., Eastwood R.F., Hollamby G.J., Kuchel H., Martin P.J., Cornish G.B. Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Australian J. Agricultur. Res. 2006;57(2): 179-186.

49. Elouafi I., Nachit M.M., Martin L.M. Identification of a microsatellite on chromosome 7B showing a strong linkage with yellow pigment in durum wheat (Triticum turgidum L. var. durum). Hereditas. 2001; 135:255-261.

50. Elshire R.J., Glaubitz J.C., Sun Q., Poland J.A., Kawamoto K., Buckler E.S., Mitchell S.E. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE. 2011;6: e19379. DOI 10.1371/journal.pone.0019379.

51. Ermakova M.F., Chistyakova A.K., Shchukina L.V., Pshenichnikova T.A., Morozova E.V., Simonov A.V., Weidner A., Börner A. Technological properties of grain and flour in bread wheat lines with introgressions from Aegilops speltoides and Aegilops markgrafii. AGRISAFE Final conference “Climate change: Challenges and Opportunities in Agriculture”, March 21–23, 2011, Budapest, Hungary, 2011;63-66.

52. Ermakova M.F., Pshenichnikova T.A., Shchukina L.V., Osipova S.V., Mitrofanova T.N., Börner A., Lohwasser U., Röder M. The history of the development of precise genetic stocks of bread wheat in Novosibirsk and their application for investigation of grain quality. EWAC Newsletter. Proc. 14th EWAC Conf., Istanbul, Turkey, 6–10 May, 2007, Ed. A. Börner, J. Snape, 2008;12-16.

53. Ficco D.B.M., Mastrangelo A.M., Trono D., Borrelli G.M., De Vita P., Fares C., Beleggia R., Platani C., Papa R. The colours of durum wheat: a review. Crop Pasture Science. 2014;65:1-15.

54. Fuerst E.P., Xu S.S., Beecher B. Genetic characterization of kernel polyphenol oxidases in wheat and related species. J. Cereal Science. 2008;48:359-368.

55. Galimberti A., De Mattia F., Losa A., Bruni I., Federici S., Casiraghi M., Martellos S., Labra M. DNA barcoding as a new tool for food traceability. Food Res. International. 2013;50:55-63.

56. Garg M., Kumar R., Singh R.P., Tsujimoto H. Development of an Aegilops longissima substitution line with improved bread-making quality. J. Cereal Science. 2014;60:389-396.

57. Gautier M.F., Aleman M.E., Guirao A., Marion D., Joudrier P. Triticum aestivum puroindolines, two cystine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 1994;25:43-57.

58. Giroux M.J., Morris C.F. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starchsurface friabilin. Theor. Appl. Genet. 1997;95:857-864.

59. Giroux M.J., Morris C.F. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. PNAS. 1998;95:6262-6266.

60. Groos C., Robert N., Bervas, E., Charmet G. Genetic analysis of grain protein- content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 2003;106:1032-1040.

61. He X.Y., He Z.H., Ma W., Appels R., Xia X. C. Allelic variants of phytoene synthase 1 (Psy1) genes in Chinese and CIMMYT wheat cultivars and development of functional markers for flour colour. Mol. Breeding. 2009;23:553-563.

62. Heffner E.L., Jannink J.-L. Sorrells M.E. Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome. 2011;4:65-75.

63. Heffner E.L., Lorenz A.J., Jannink J.-L. Sorrells M.E. Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Science. 2010;50:1681-1690.

64. Hessler T.G., Thomson M.J., Benscher D., Nachit M.M., Sorrells M.E. Association of a lipoxygenase locus, Lpx-B1, with variation in lipoxygenase activity in durum wheat seeds. Crop Science. 2002;42(5): 1695-1700.

65. Himi E., Maekawa M., Miura H., Noda K. Development of PCR markers for Tamyb10 related to R-1, red grain color gene in wheat. Theor. Appl. Genet. 2011;122:1561-1576.

66. Huang X.Q., Börner A., Röder M.S., Ganal M.W. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 2002;105:699-707.

67. Huang X.Q., Brûlé-Babel A. Development of simple and co-dominant PCR markers to genotype puroindoline a and b alleles for grain hardness in bread wheat (Triticum aestivum L.). J. Cereal Sci. 2011;53:277-284.

68. Ikeda T.M., Ohnishi N., Nagamine T., Oda S., Hisatomi T., Yano H. Identification of new puroindoline genotypes and their relationship to flour texture among wheat cultivars. J. Cereal Sci. 2005;41:1-6.

69. Joppa L.R., Cantrell R.G. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Science. 1990;30(5): 1059-1064.

70. Juhász A., Gianibelli M.C. Low-molecular-weight glutenin subunits: insights into this abundant subunit group present in glutenin polymers. In: Gliadin and Glutenin. The unique balance of wheat quality. Eds: C. Wrigley, F. Békés, W. Bushuk. AACC International, 2006; 171-212.

71. Kerfal S., Giraldo P., Rodríguez-Quijano M., FranciscoVázquez J., Adams K.M., Lukow O.M., Röder M.S., Somers D., Carrillo J.M. Mapping quantitative trait loci (QTLs) associated with dough quality in a soft hard bread wheat progeny. J. Cereal Science. 2005;52:6-52.

72. Khan I.A., Procunier J.D., Humphreys D.G., Tranquilli G., Schlatter A.R., Marcucci- Poltri S., Frohberg R., Dubcovsky J. Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Science. 2000;40(2):518-524.

73. Khlestkina E.K. Molecular methods for analyzing the structure–function organization of genes and genomes in higher plants. Russ. J. Genet.: Appl. Res. 2012;2: 243-251.

74. Khlestkina E.K. Molecular markers in genetic studies and breeding. Russ. J. Genet.: Appl Res. 2014;4(3):236-244.

75. Khlestkina E.K., Giura A., Röder M. S., Börner A. A new gene controlling the flowering response to photoperiod in wheat. Euphytica. 2009;165:579-585.

76. Khlestkina E.K., Röder M.S., Efremova T.T., Börner A., Shumny V.K. The genetic diversity of old and modern Siberian varieties of common spring wheat determined by microsatellite markers. Plant Breeding. 2004;123:122-127.

77. Khlestkina E.K., Salina E.A. SNP markers: Methods of analysis, ways of development, and comparison on an example of common wheat. Russian Journal of Genetics. 2006;42(6):585-594.

78. Khlestkina E.K., Salina E.A., Shumny V.K. Genotyping of native soft wheat varieties for microsatellite (SSR) markers. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2004;5:44-52.

79. Khrabrova M.A., Maystrenko O.I. Monosomic genetic analysis of protein content in grain and its mass in bread wheat variety Diamant 2. Genetika = Genetics (Moscow). 1980;16(8):1425-1434.

80. Khrabrova M.A., Maystrenko O.I. Localization of chromosomes of wheat variety Diamant 1 controlling the level of protein content in grain using the method of monosomic reciprocal analysis of disomic F2 progeny. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 1984 (12):44-47.

81. Kilchevsky A.V., Babak O.G., Nekrashevich N.A.,Adzhieva V.F., Malyshev S.V., Grushetskaya Z.F., Mishin L.A., Dobrodkin M.M., Zaytseva I.E., Pugacheva I.G. Molekulyarnye tekhnologii v selektsii tomata (Solanum lycopersicum L.) [Molecular techniques in tomato breeding (Solanum lycopersicum L.)]. Geneticheskie osnovy selektsii rasteniy [Genetic Bases of Plant Breeding]. Minsk, Belaruskaya navuka Publ., 2014;4(11):290-344.

82. Kim C., Guo H., Kong W., Chandnani R., Shuang L.S., Paterson A.H. Application of genotyping by sequencing technology to a variety of crop breeding programs. Plant Science. 2016;242:14-22. DOI 10.1016/j.plantsci.2015.04.016.

83. Klimushina M.V., Kroupin P.Yu., Divashuk M.G., Karlov G.I. About optimization of molecular labeling of wheat Waxy-genes for MASselection. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2010;5:36-41.

84. Kovacs M.I.P., Howes N.K., Clarke J.M., Leisle D. Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6b) substitution. J. Cereal Science. 1998; 27(1):47-51.

85. Kunert A., Naz A.A., Dedeck O., Pillen K., Leon J. AB-QTL analysis in winter wheat: I. Synthetic hexaploid wheat (T. turgidum ssp. dicoccoides × T. tauschii) as a source of favourable alleles for milling and baking quality traits. Theor. Appl. Genet. 2007; 115:683-695.

86. Landjeva S., Korzun V., Börner A. Molecular markers: actual and potential contributions to wheat genome characterization and breeding. Euphytica. 2007;156:271-296.

87. Lau W.C.P., Rafii M.Y., Ismail M.R., Puteh A., Latif M.A., Ramli A. Review of functional markers for improving cooking, eating, and the nutritional qualities of rice. Front. Plant Science. 2015;6:832.

88. Li G., He Z., Lillemo M., Sun Q., Xia X. Molecular characterization of allelic variations at Pina and Pinb loci in Shandong wheat landraces, historical and current cultivars. J. Cereal Science. 2008;47:510-517.

89. Liu S., Rudd J.C., Bai G., Haley S.D., Ibrahim A.M.H., Xue Q., Hays D.B., Graybosch R.A., Devkota R.N., Amand P.S. Molecular markers linked to important genes in hard winter wheat. Crop Sci. 2014;54:1304-1321.

90. Liu Y., He Z., Appels R., Xia X. Functional markers in wheat: current status and future prospects. Theor. Appl. Genet. 2012;125:1-10.

91. Ma D.Y., Yan J., He Zh., Wu L., Xia X.C. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers. Mol. Breeding. 2012;29: 43-52.

92. Martín-Fernandez B., Costa J., Oliveira M.B.P.P., Lopez-Ruiz B., Mafra I. Screening new gene markers for gluten detection in foods. Food Control. 2015;56:57-63.

93. Maystrenko O.I., Troshina A.V. The problems of variability for gluten quality in bread wheat hybrids in the dependence of choice of parental varieties. Genetika = Genetics (Moscow). 1966;9:124-133.

94. Maystrenko O.I., Troshina A.V., Ermakova M.F. Chromosomal arm location of genes for flour quality in wheat using ditelosomic lines. Proc. 4th Intern. Wheat Genetics Symp. Missouri Agr. Exp. Sta., Columbia, Mo, 1973;51-56.

95. Maystrenko O.I., Troshina A.V., Lysenko R.G., Ermakova M.F., Khrabrova M.A. About the perspectives of wheat breeding for a high protein and gluten content. Selektziya i semenovodstvo = Breeding and Seed Production. 1969;2:27-31.

96. McCartney C.A., Somers D.J., Lukow O., Ames N., Noll J., Cloutier S., Humphreys D.G., McCallum B.D. QTL analysis of quality traits in the spring wheat cross RL4452. AC Domain. Plant Breeding. 2006; 125:565-575.

97. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp (accessed 10 November 2015).

98. McLauchlan A., Ogbonnaya F.C., Hollingsworth B., Carter M., Gale K.R., Henry R.J., Holton T.A., Morell M.K., Rampling L.R., Sharp P.J., Shariflou M.R., Jones M.G.K., Appels R. Development of robust PCR-based DNA markers for each homoeo-allele of granule- bound starch synthase and their application in wheat breeding programs. Australian J. Agricultur. Res. 2001;52: 1409-1416.

99. Mesfin A., Frohberg R., Anderson J.A. RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci. 1999;39(2):508-513.

100. Mirovoy rynok zerna-2014/15: pod vliyaniem rekordov proizvodstva i snizheniya tsen. APK-Inform: Itogi. №6 [World grain market, 2014/15: under the influence of record production and prices decrease. APK-Inform: Overview. No. 6]: http://www.apk-inform.com/ru/exclusive/opinion/1039595#.VlQon3bhCUn

101. Mitrofanova O.P. Wheat genetic resources in Russia: Current status and prebreeding studies. Russ. J. Genet.: Appl. Res. 2012;2:277-285.

102. Moose S.P., Mumm R. Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement. Plant Physiol. 2008;147:969-977.

103. Morozova E.V., Pshenichnikova T.A., Simonov A.V., Shchukina L.V., Chistyakova A.K., Khlestkina E.K. A comparative study of grain and flour quality parameters among Russian bread wheat cultivars developed in different historical periods and their association with certain molecular markers. Abstr. International Conference EWACEUCARPIA Cereals Section, Lublin, Poland, May 24-29, 2015;11.

104. Morris R., Schmidt J.W., Mattern P.J., Johnson V.A. Chromosomal location of genes for high protein in the wheat cultivar Atlas 66. Proc. 4th Internat. Wheat Genetics Symp. Missouri Agric. Exptl. Sta., Columbia, 1973;715.

105. Nakamura Т., Hoshino Н., Hidaka S. Identification of three Wx proteins in wheat (Triticum aestivum L.). Biochem. Genet. 1993; 31:75-86.

106. Nakamura T., Vrinten P., Saito M., Konda M. Rapid classification of partial waxy wheats using PCR-based markers. Genome. 2002;45: 1150-1156.

107. Parker G.D., Chalmers K.J., Rathjen A.J., Langridge P. Mapping loci associated with flour colour in wheat (Triticum aestivum L.). Theor. Appl. Genet. 1998;97:238-245.

108. Parker G.D., Chalmers K.J., Rathjen A.J., Langridge P. Mapping loci associated with milling yield in wheat (Triticum aestivum L.). Mol. Breeding. 1999;5:561-568.

109. Parker G.D., Langridge P. Development of a STS marker linked to a major locus controlling flour colour in wheat (Triticum aestivum L.). Mol. Breeding. 2000;6(2):169-174.

110. Paux E., Sourdille P., Mackay I., Feuillet C. Sequence-based marker development in wheat: advances and applications to breeding. Biotechnol. Advances. 2012;30:1071-1088.

111. Peña R.J. Wheat for bread and other foods. In: Bread Wheat. Improvement and Prodiction. FAO. 2002.

112. Poland J., Endelman J., Dawson J., Rutkoski J., Wu S., Manes Y., Dreisigacker S., Crossa J., Sánchez-Villeda H., Sorrells M., Jannink J.-L. Genomic selection in wheat breeding using genotypingby- sequencing. Plant Genome. 2012;5:103-113.

113. Ponzoni E., Breviario D., Mautino A., Giani S., Morello L.A multiplex, bead-based array for profiling plant-derived components in complex food matrixes. Analytic. Bioanalytic. Chem. 2013;405:9849-9858.

114. Poznyakovskij V.M., Chelnakova N.G., Kuznetsova O.S., Gavrilov A.F. Crisis of the nutrition of modern humans: food quality and safety. Izvestiya vysshikh uchebnykh zavedeniy. Pishchevaya tekhnologiya = News of Institutes of Higher Education. Food technology. 2004;1:6-7.

115. Poznyakovskij V.M., Gur’nov Yu.G, Bebenin V.V. Pishchevye i biologicheskie aktivnye dobavki: kharakteristika, primenenie, kontrol [Food and dietary supplements: characteristics, application, control]. Kemerovo, Kuzbassvuzizdat Publ., 2011.

116. Prasad M., Kumar N., Kulwal P.L., Röder M.S., Balyan H.S., Dhaliwal H.S., Gupta P.K. QTL analysis for grain protein content using SSR markers and validation studies using NILs in bread wheat. Theor. Appl. Genet. 2003;106:659-667. DOI 10.1007/s00122- 002-1114-y.

117. Proizvodstvo pshenitsy v Rossii po regionam. Itogi 2014 goda. Ekspertno-analiticheskiy tsentr agrobiznesa [Wheat production in regions of Russia. The results of 2014. The expert-analytical center of agribusiness]. Available at: http://ab-centre.ru/articles/proizvodstvopshenicy-v-rossii-v-2014-godu (accessed 26 November 2015).

118. Pshenichnikova T.A. Ermakova M.F., Chistyakova A.K., Shchukina L.V., Berezovskaya E.V., Lohwasser U., Röder M., Börner A. Mapping of the quantitative trait loci (QTL) associated with grain quality characteristics of the bread wheat grown under different environmental conditions. Genetika = Genetics (Moscow). 2008; 44(1):74-84.

119. Pshenichnikova T.A., Ermakova M.F., Popova R.K. Technological properties of grain and flour in bread wheat lines with the substitution of chromosomes of 1 and 6 homoeological groups. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2006;1:57-62.

120. Pshenichnikova T.A., Khlestkina E.K., Shchukina L.V., Simonov A.V., Chistyakova A.K., Morozova E.V., Landjeva S., Karceva T., Börner A. Exploitation of Saratovskaya 29 (Janetzkis Probat 4D*7A) substitution and derivate lines for comprehensive phenotyping and molecular mapping of quantitative trait loci (QTL). EWAC Newsletter 2012, Proc. of the 15th International EWAC Conference, 7–11 November 2011, Novi Sad, Serbia, 2012;19-22.

121. Pshenichnikova T.A., Simonov A.V., Shchukina L.V., Morozova E.V., Chistyakova A.K., Börner A. Enlargement of the genetic diversity for grain quality in bread wheat through alien introgression. Advances in Wheat Genetics: From Genome to Field. Yokohama, Japan. Eds: Yasunari Ogihara, Shigeo Takumi, Hirokazu Handa, 2015; 287-292.

122. Pumpyanskiy A.Ya. Tekhnologicheskie svoystva myagkikh pshenits (po dannym mirovoy kollektsii VIR) [Technological Properties of Soft Wheats (According to the VIR World Collection)]. Leningrad, Kolos Publ., 1971.

123. Ram S., Jain N., Shoran J., Singh R. Newframe shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and NI5439. J. Plant Biochem. Biotechnol. 2005;14:45- 48.

124. Randhawa H.S., Asif M., Pozniak C., Clarke J.M., Graf R.J., Fox S.L., Humphreys D.G., Knox R.E., DePauw R.M., Singh A.K., Cuthbert R.D., Hucl P., Spaner D., Gupta P. Application of molecular markers to wheat breeding in Canada. Plant Breeding. 2013;132: 458-471.

125. Rasheed A., Xia X., Yan Y., Appels R., Mahmood T., He Zh. Wheat seed storage proteins: Advances in molecular genetics, diversity and breeding applications. J. Cereal Science. 2014;60:11-24. http://dx.doi.org/10.1016/j.jcs.2014.01.020

126. Röder M.S., Huang X.-Q., Börner A. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct. Integr. Genomics. 2008;8:79-86. DOI 10.1007/s10142-007-0053-8.

127. Saiki R.K., Scharf S., Faloona F., Mullis K.B., Horn G.T., Erlich H.A., Arnheim N. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle-cell anemia. Science. 1985;230:1350-1354.

128. Schena M., Shalon D., Davis R.W., Brown P.O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science. 1995;270:467-470.

129. Serdyukova Yu.S. Khlebopekarnaya promyshlennost’: osobennosti formirovaniya mekhanizma upravleniya faktorami effektivnosti [Bakery Industry: Features of Formation of the Mechanism of Performance Management Factors]. Novosibirsk, Novosibirsk State University Publ., 2004.

130. Serdyukova Yu.S. Novye instrumenty sistemy podderzhki prinyatiya upravlencheskikh resheniy na rynke khleba [The New Tools for Supporting the System for Management Decision-Making in the Bread Market]. KZ: Zhasgalym. 2012;2:51-58.

131. Serdyukova Yu.S., Usenko N.I. Strategic priorities of russia-belarus integration in terms of food security issue. Economic Social Changes: Facts, Trends, Forecast. 2013;3(27):62-70.

132. Shariflou M.R., Hassani M.E., Sharp P.J. A PCR-based DNA marker for detection of mutant and normal alleles of the Wx-D1 gene of wheat. Plant Breeding. 2001;120(2):121-124.

133. Shariflou M.R., Sharp P.J. A polymorphic microsatellite in the 3’ end of ‘waxy’ genes of wheat, Triticum aestivum. Plant Breeding. 1999;118(3):275-277.

134. Simmonds N.W. The relation between yield and protein in cereal grain. J. Science Food Agriculture. 1995;67:309-315.

135. Somers D.J., Kirkpatrick R., Moniwa M., Walsh A. Mining singlenucleotide polymorphisms from hexaploid wheat ESTs. Genome. 2003;49:431-437.

136. Su Z.Q., Hao C.Y., Wang L.F., Dong Y.C., Zhang Z.Y. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2011;122:211-223.

137. Sun H., Lu J., Fan Y., Zhao Y., Kong F., Li R., Wang H., Li S. Quantitative trait loci (QTLs) for quality traits related to protein and starch in wheat. Progress Natural Science. 2008;18:825-831.

138. Tanksley S.D. Molecular markers in plant breeding. Plant Mol. Biol. Reports. 1983;1:3-8.

139. Tanksley S.D., Young N.D., Paterson A.H., Bonierbale M.W. RFLP mapping in plant breeding: new tools for an old science biotechnology. Nature Biotechnol. 1989;7:257-264.

140. Tarkowski C., Otlowska-Miazga D. Location of genes controlling the quantitative level of protein in kernels of winter wheat, Luna variety. Genetica polonica. 1976;17(3):319.

141. Timonova E.M., Leonova I.N., Röder M.S., Salina E. Marker-assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol. Breeding. 2013;31:123-136.

142. Tranquilli G., Lijavetzky D., Muzzi G., Dubcovsky J. Genetic and physical characterization of grain texture-related loci in diploid wheat. Mol. General Genet. 1999;262:846-850.

143. Tsilo T.J., Nygard G., Khan Kh., Simsek S., Hareland G., Chao Sh., Anderson J.A. Molecular genetic mapping of QTL associated with flour water absorption and farinograph related traits in bread wheat. Euphytica. 2013;194:293-302. DOI 10.1007/s10681-013-0906-2.

144. Turner M., Mukai Y., Leroy P., Charef B., Appels R., Rahman S. The Ha locus of wheat: identification of a polymorphic region for tracing grain hardness in crosses. Genome. 1999;42(6):1242-1250.

145. Uauy C., Distelfeld A., Fahima T., Blechl A., Dubcovsky J. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Sciense. 2006;314:1298-1301.

146. Urbanovich O.Yu., Kozlovskaya Z.A., Khatskevich A.A., Kartel N.A. Molecular methods in apple breeding for resistance to rosy leafcurling aphid. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2013;5:54-60.

147. Usenko N., Safianov V. Problems of Kuzbass bakers under the new conditions. Khleboprodukty = Bakery Products. 1996;8:9-11.

148. Usenko N., Serdyukova Yu. Regional grain fund as a mechanism for implementing the cooperation between business and government. Khleboprodukty = Bakery Products. 2005;6:2-3.

149. Vishwakarma M.K., Mishra V.K., Gupta P.K., Yadav P.S., Kumar H., Joshi A.K. Introgression of the high grain protein gene Gpc-B1 in an elite wheat variety of Indo-Gangetic Plains through marker assisted backcross breeding. Curr. Plant Biol. 2014;1:60-67.

150. Vrinten P., Nakamura T., Yamamori M. Molecular characterization of waxy mutations in wheat. Mol. General Gen. 1999; 261(3):463-471.

151. Waga J., Skoczowski A. Development and characteristics of ω-gliadinfree wheat Genotypes. Euphytica. 2014;195:105-116.

152. Wang L., Li G., Xia X., He Z., Mu P. Molecular characterization of Pina and Pinb allelic variations in Xinjiang landraces and commercial wheat cultivars. Euphytica. 2008;164:745-752.

153. William H., Trethowan R., Crosby-Galvan E. Wheat breeding assisted by markers: CIMMYT’s experience. Euphytica. 2007;157:307-319.

154. Worzella W.W. The inheritance of quality in Trumbull and Michikof varieties of winter wheat. J. Agr. Res. 1934;49(8):705-714.

155. Worzella W.W. Inheritance and interrelationship of components of quality, cold resistance and morphological characters in wheat hybrids. J. Agr. Res. 1942;65(11):501-522.

156. Xu Y., Crouch J.H. Marker-assisted selection in plant breeding: from publications to practice. Crop Science. 2008;48:391-407.

157. Yamamori M., Quynh N.T. Differential effects of Wx-A1, -B1 and -D1 protein deficiencies on apparent amylose content and starch pasting properties in common wheat. Theor. Appl. Genet. 2000;100: 32-38.

158. Zanetti S., Winzeler M., Feuillet C., Keller B., Messmer M. Genetic analysis of bread-making quality in wheat and spelt. Plant Breeding. 2001;120:13-19.

159. Zhang F., Chen F., Wu P., Zhang N., Cui D. Molecular characterization of lipoxygenase genes on chromosome 4BS in Chinese bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 2015; 128:1467-1479.

160. Zhang X., Tian J.C. The color advantage of Chinese wheat with high whiteness and analysis of factors affecting color formation. Scientia Agricultura Sinica. 2008;41:347-353.

161. Zheng W.Y., Wang F., Si H.Q., Zhang W.M., Yao D.N. Variations of LOX and PPO activities and carotenoid content as well as their influence on whole flour color in common wheat. Sci. Agricultura Sinica. 2013;46(6):1087-1094.


Review

Views: 4689


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)