Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Генетическое разнообразие растений-регенерантов пшеницы (Triticum aestivum L.), созданных методом культуры пыльников

https://doi.org/10.18699/VJ16.176

Полный текст:

Аннотация

Изучено генетическое разнообразие растений-регенерантов пшеницы (Triticum aestivum L.), которые созданы методом культуры пыльников из гибридов, используемых в селекции этой культуры в Латвии. Метод проточной цитометрии применяли для определения плоидности каждого зеленого растения-регенеранта. В свою очередь, универсальным iPBS (inter primer binding sites) методом, основанном на анализе характерных последовательностей ретротранспозонов, определяли генетическое разнообразие этих растений. Анализу подвергали потомство 13 гибридов различного происхождения. В листьях большинства растений были миксоплоидные клетки. Семена дали только растения, имеющие клетки с плоидностью 2n = 6x. Большинство фертильных растений содержало в листьях более чем 40 % гексаплоидных (6x) клеток. Доля гексаплоидных клеток и их распределение по плоидности зависели от генотипа материнского гибридного растения. Доля спонтанной диплоидизации также зависела от генотипа растения. В описываемом эксперименте колхицинирование не оказало достоверного влияния на выход фертильных растений. У одного гибридного растения обнаружена новая доминантная аллель, отсутствующая у обоих родителей, что указывает на возможное передвижение ретротранспозонов. Генетическое разнообразие растений-регенерантов, созданных методом культуры пыльников, вызвано как расщеплением родительских аллелей, так и сомаклональной изменчивостью.

Об авторах

Д. Грауда
Латвийский университет, Институт биологии
Латвия
Саласпилс


К. Жагата
Латвийский университет, Институт биологии
Латвия
Саласпилс


Г. Ланка
Латвийский университет, Институт биологии
Латвия
Саласпилс


В. Страздиня
Стендский исследовательский центр Института сельскохозяйственных ресурсов и экономики, Латвийский сельскохозяйственный университет
Латвия
Стенде


В. Фетере
Стендский исследовательский центр Института сельскохозяйственных ресурсов и экономики, Латвийский сельскохозяйственный университет
Латвия
Стенде


Н. Лисина
Латвийский университет, Институт биологии
Латвия
Саласпилс


Н. Красневска
Латвийский университет, Институт биологии
Латвия
Саласпилс


О. Фокина
Латвийский университет, Институт биологии
Латвия
Саласпилс


А. Mикельсоне
Латвийский университет, Институт биологии
Латвия
Саласпилс


Р. Oрницанс
Латвийский университет, Институт биологии
Латвия
Саласпилс


И. Белогрудова
Латвийский университет, Институт биологии
Латвия
Саласпилс


И. Рашаль
Латвийский университет, Институт биологии
Латвия
Саласпилс


Список литературы

1. Bairu M.W., Aremu A.O., Van Staden J. Somaclonal variation in plants: caudes and detection methods. Plant Growth Regulation. 2011; 63(2):147-173.

2. Barnabás B. Protocol for producing doubled haploid plants from anther culture of wheat (Triticum aestivum L.): Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (ed.). Doubled Haploid Production in Crop Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003;65-70.

3. Barnabás B., Pfahler P.L., Kovacs G. Direct effect of colchicine on the microspore embryogenesis to produce dihaploid plants in wheat Triticum aestivum L. Theor. Appl. Genet. 1991;81:675-678.

4. Belchev I., Tchorbadjieva M., Pantchev I. Effect of 5-azacytidine on callus induction and plant regeneration potential in anther culture of wheat (Triticum aestivum L.). Bulgarian J. Plant Physiology. 2004; 30(1-2):45-50.

5. Bennetzen J. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biology. 2000;42(1):251-269.

6. Casacuberta J.M., Santiago N. Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene. 2003;311:1-11.

7. Chen Z.Z., Snyder S., Fan Z.G., Loh W.H. Efficient production of doubled haploid plants through chromosome doubling of isolated microspores in Brassica napus. Plant Breed. 1994;113:217-221.

8. Dhooghe E., van Laere K., Eeckhaut T., Leus L., Van Huylenbroeck J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tiss. Organ Culture. 2011;104:359-373.

9. Doležel J., Greilhuber J., Suda J. Flow cytometry with plants: an overview: Doležel J., Greilhuber J., Suda J. (Eds.) Flow cytometry with plant cells. WILEY-VCH Verlag GmbHCo. KGaA, 2007;41-65.

10. Duclercq J., Sangwan-Norreel B., Catterou M., Sangwan R.S. De novo shoot organogenesis: from art to science. Trends Plant Science. 2011;16(11):597-606.

11. El-Hennawy M.A., Abdalla A.F., Shafey S.A., Al-Ashkar I.M. Production of doubled haploid wheat lines (Triticum aestivum L.) using anther culture technique. Ann. Agricultural Science. 2011;56(2):63-72.

12. Ferrie A.M.R., Caswell K.L. Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell, Tiss. Organ Culture. 2010;104(3):301-309.

13. Galbraith D.W. Flow cytometry and fluorescence-activated cell sorting in plants: the past, present, and future. Biomédica. 2010;30:65-70.

14. Goncharov N. Comparative genetics of wheats and their related species. Novosibirsk, 2002;177-242.

15. Grauda D., Keiša A., Rashal I. Obtaining of doubled haploid lines for Latvian barley and wheat breading programs by anther culture method. Sordiaretus Seemnekasvatus. 2005;9:209-216.

16. Grauda D., Lepse N., Strazdiņa V., Kokina I., Lapiņa L., Miķelsone A., Ļubinskis L., Rashal I. Obtaining of doubled haploid lines by anther culture method for the Latvian wheat breeding. Agronomy Research. 2010;8(3):545-552.

17. Grauda D., Miķelsone A., Lisina N., Zagata K., Ornicans R., Fokina O., Lapiņa L., Rashal I. Anther culture effectiveness in producing doubled haploids of cereals. Proc. Latvian Academy Sciences, Section B: Natural, Exact, Applied Sciences. 2014;68(3-4):142-147.

18. Grauda D., Strazdiņa V., Kokina I., Lapiņa L., Miķelsone A., Rashal I. Extension of spring wheat breeding using haploids technology. Acta Biologica Universitatis Daugavpiliensis. 2009;9(2):263-268.

19. Hansen N.J.P., Andersen S.B. In vitro chromosome doubling with colchicine during microspore culture in wheat (Triticum aestivum L.). Euphytica. 1998;102:101-108.

20. Irikova T., Grozeva S., Popov P., Rodeva V., Todorovska E. In vitro response of pepper anther culture (Capsicum annuum L.) depending on genotype, nutrient medium and duration of cultivation. Biotechnology Biotechnological Equipment. 2011;25(4):2604-2609.

21. Jacquard C., Nolin F., Hécart C., Grauda D., Rashal I., Dhondt-Cordelier S., Sangwan R.S., Devaux P., Mazeyrat-Gourbeyre F., Clément C. Microspore embryogenesis and programmed cell death in barley: effects of copper on albinism in recalcitrant cultivars. Plant Cell Reports. 2009;28:1329-1339.

22. Jacquard C., Wojnarowiez G., Clément C. Anther culture in barley. In: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (ed.). Doubled Haploid Production in Crop Plants. Dordrecht, Netherlands: Kluwer Academic Publishers, 2003;21-27.

23. Jain S.M., Ahloowalia B.S., Veilleux R.E. Somaclonal variation in crop improvement. Somaclonal Variation and Induced Mutations in Crop Improvement. 1998;203-218.

24. Kalendar R., Antonius K., Smýkal P., Schulman A.H. iPBS: a universal method for DNA printing and retrotransposon isolation. Theor. Appl. Genet. 2010;121:1419-1430.

25. Kalendar R., Schulman A.H. IRAP and REMAP for retrotransposonbased genotyping and fingerprinting. Nature Protocols. 2006;1(5): 2478-2484.

26. Kalendar R., Schulman A.H. Transposon-Based Tagging: IRAP, REMAP, and iPBS. Molecular Plant Taxonomy: Methods and Protocols. Methods Mol. Biology. 2014;11-15.

27. Kasha K.J., Maluszynski M. Production of doubled haploids in crop plants: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (ed.). Doubled Haploid Production in Crop Plant. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003;1-4.

28. Khan I.A., Dahot M.U., Seema N., Bibi S., Khatri A. Genetic variability in plantlets derived from callus culture in sugarcane. Pakistan J. Botany. 2008;40(2):547-564.

29. Kļaviņa D., Grauda D., Priede A., Rashal I. Habitat diversity and genetic variability of Cypripedium calceolus in Latvia. Mirek Z., Nikel A., Paul W. (eds). Actions for Wild Plants. Committee on Nature Conservation, Polish Academy of Sciences, Kraków, 2014;91-97.

30. Kubis S., Schmidt T., Heslop-Harrison J.S. Repetitive DNA Elements as a Major Component of Plant Genomes. 1998;82:45-55.

31. Kunz C., Islam S.M.S., Berberat J., Peter S.O., Büter B., Stamp P., Schmid J.E. Assessment and improvement of wheat microspore derived embryo induction and regeneration. J. Plant Physiology. 2000; 156:190-196.

32. Levan A. The effect of colchicine on root mitoses in Allium. Hereditas. 1938;24:471-486.

33. Li W., Zhang P., Fellers J.P., Friebe B., Gill B.S. Sequence composition, organization, and evolution of the core Triticeae genome. Plant J. 2004;40(4):500-511.

34. Murovec J., Bohanec B. Haploids and Doubled Haploids in plant Breeding: Abdurakhmonov I.Y. (ed.). Plant Breeding. Rijeka, 2012; 87-101.

35. Pauk J., Mihaly R., Puolimatka M. Protocol for wheat (Triticum aestivum L.) anther culture: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (ed.). Doubled Haploid Production in Crop Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003;249-254.

36. Pierik R.L.M. In vitro Culture of Higher Plants. Boston: Martinus Nijhoff Publishers, 1997;344.

37. Quinn G.P., Keough M.J. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, 2002;537.

38. Ramsey J., Schemske D.W. Pathways, mechanisms, and rates of polyploidy formation in flowering plants. Ann. Review Ecology Systematics. 1998;29:467-501.

39. Rubtsova M., Gnad H., Melzer M., Weyen J., Gils M. The auxins centrophenoxine and 2.4-D differ in their effects or non-directly induced chromosome doubling in anther culture of wheat (T. aestivum L.). Plant Biotechnology Reports. 2012;1-9.

40. Smith R.P., Park S.H. Tissue culture for crop improvement: Quantitative genetics. Genomics Plant Breeding. 2002;189-196.

41. Smýkal P., Bačova-Karteszova N., Kalendar R., Corander J., Schulman A.H., Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor. Appl. Genet. 2011;122:1385-1397.

42. Soriano M., Cistué L., Vallés P.M., Castillo A. M. Fffects of colchicine on anther and microspore culture of bread wheat (Triticum aestivum L.). Plant Cell Tiss. Organ Cult. 2007;91:225-234.

43. Tadesse W., Inagaki M., Tawkaz S., Baum M., van Ginkel M. Recent advances and application of doubled haploids in wheat breeding. African J. Biotechnology. 2012;11(89):15484-15492.

44. Torp A.M., Hansen A.L. Chromosomal regions associated with green plant regeneration in wheat (Triticum aestivum L.) anther culture. Euphytica. 2001;119:377-387.

45. Touraev A., Vicente O., Heberle-Bors E. Initiation of microspore embryogenesis by stress. Trends Plant Science. 1997;2(8):297-302.

46. Tuvesson S., von Post R., Ljungberg A. Wheat anther culture: Maluszynski M., Kasha K.J., Forster B.P., Szarejko I. (ed.). Doubled Haploid Production in Crop Plants. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2003;71-76.

47. Xynias I.N., Zamani I.A., Gouli-Vavdinoudi E., Roupakias D.G. Effect of cold pretreatment and incubation temperature on bread wheat (Triticum aestivum L.) anther culture. Cereal Research Communications. 2001;29(3-4):331-338.

48. Yılmaz M., Ozic C., Gok I. Principles of Nucleic Acid Separation by Agarose Gel Electrophoresis, Gel Electrophoresis – Principles and Basics. 2012.

49. Zamani I., Gouli-Vavdinoudi E., Kovacs G., Xynias I., Roupakias D., Barnabás B. Effect of parental genotypes and colchicine treatment on the androgenic response of wheat F1 hybrids. Plant Breeding. 2003;122(4):314-317.


Просмотров: 319


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)