Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Устойчивость картофеля к вирусам: современное состояние и перспективы

https://doi.org/10.18699/VJ17.224

Аннотация

Одна из важнейших продовольственных культур в мире, картофель (Solanum tuberosum) заражается многими вирусами, девять из которых имеют важное экономическое значение, вызывая существенные потери урожая и заметное снижение качества продукции. Для минимизации последствий вирусных инфекций в странах с высоким уровнем развития сельского хозяйства поддерживаются и совершенствуются санитарные меры, предусматривающие постоянный мониторинг распространения вирусов и сертификацию посадочного материала на основе диагностики и оздоровления сортов картофеля. Однако в долгосрочной перспективе предпочтительным является создание устойчивых к вирусам сортов картофеля. Методами традиционной селекции и генно-инженерными методами с использованием генов природной устойчивости, источником которых, как правило, служат дикорастущие виды Solanum, или с помощью вирус-специфических последовательностей к настоящему времени получен ряд сортов/линий картофеля, устойчивых к большинству вирусов. Однако названные подходы имеют существенные ограничения, обусловленные, в частности, тем, что приобретаемая устойчивость специфична (против отдельных вирусов), недолговременна и способна преодолеваться вирусом, а также наличием регуляторных запретов на использование генно-модифицированных растений. На современном этапе новые технологии редактирования генома с целью дизайна генов открывают широкие возможности для создания новой генерации генов устойчивости. Наиболее перспективными представляются: направленный мутагенез генов специфической устойчивости для придания им более широкого спектра действия; использование генов неспецифической или «нехозяйской» устойчивости (non-host resistance), что позволяет получать растения, устойчивые к неродственным вирусам, а в некоторых случаях и к другим патогенам и даже абиотическим стрессам. Идентификация генов, вовлеченных в механизмы «нехозяйской» устойчивости, только начинается. Новым источником неизвестных до настоящего времени факторов, вовлеченных в разнообразные сигнальные пути защитного ответа растения на вирусную инфекцию, является клеточное ядро. Описанию подходов и проблем, связанных с получением устойчивых к вирусным инфекциям растений картофеля, посвящен настоящий обзор.

Об авторах

С. С. Макарова
ООО «Дока-Генные Технологии»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова»
Россия

Московская область, Дмитровский район, Рогачево;

биологический факультет, Москва



В. В. Макаров
ООО «Дока-Генные Технологии»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова», Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского
Россия

Московская область, Дмитровский район, Рогачево;

Москва



М. Э. Тальянский
ООО «Дока-Генные Технологии»; Институт Джеймса Хаттона
Великобритания

Московская область, Дмитровский район, Рогачево;

Инверговри, Данди, Шотландия



Н. О. Калинина
ООО «Дока-Генные Технологии»; Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет им. М.В. Ломоносова», Научно-исследовательский институт физико-химической биологии им. А.Н. Белозерского
Россия

Московская область, Дмитровский район, Рогачево;

Москва



Список литературы

1. Aguiar E.R., Olmo R.P., Marques J.T. Virus-derived small RNAs: molecular footprints of host-pathogen interactions. Wiley Interdiscip. Rev. RNA. 2016;7(6):824-837. DOI 10.1002/wrna.1361.

2. Aguilar E., Almendral D., Allende L., Pacheco R., Chung B.N., Canto T., Tenllado F. The P25 protein of Potato virus X (PVX) is the main pathogenicity determinant responsible for systemic necrosis in PVX-associated synergisms. J. Virol. 2015;89(4):2090-2103. DOI 10.1128/JVI.02896-14.

3. Arif M., Azhar U., Arshad M., Zafar Y., Mansoor S., Asad S. Engineering broad-spectrum resistance against RNA viruses in potato. Transgenic Res. 2012;21:303-311. DOI 10.1007/s11248-011-9533-7.

4. Arif M., Torrance L., Reavy B. Acquisition and transmission of potato mop-top furovirus by a culture of Spongospora subterranea f. sp. subterranea derived from single cystosorus. Annals Appl. Biology.1995;126(3):493-503. DOI 10.1111/j.1744-7348.1995.tb05384.x.

5. Baldauf P.M., Gray S.M., Perry K.L. Biological and serological properties of potato virus Y isolates in northeastern United States potato. Plant Dis. 2006;90:559-566. DOI 10.1094/PD-90-0559.

6. Barker H., Dale M.F.B. Resistance to viruses in potato. Natural Resistance Mechanisms of Plants to Viruses. Ed. by G. Loebenstein, J.P. Carr. Netherlands: Springer, Dordrecht, 2006;341-366.

7. Bassett C.L. Cajal bodies and plant RNA metabolism. Crit. Rev. Plant Sci. 2012;31(3):258-270. DOI 10.1080/07352689.2011.645431.

8. Baures I., Candresse T., Leveau A., Bendahmane A., Sturbois B. The Rx gene confers resistance to a range of Potexviruses in transgenic Nicotiana plants. Mol. Plant-Microbe Interactions. 2008;21(9):11541164. DOI 10.1094/MPMI-21-9-1154.

9. Bendahmane A., Kanyuka K., Baulcombe D.C. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell. 1999;11(5):781-792. DOI 10.1105/tpc.11.5.781.

10. Bendahmane A., Kohn B.A., Dedi C., Baulcombe D.C. The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J. 1995;8:933-941.

11. Botër M., Amigues B., Peart J., Breuer C., Kadota Y., Casais C., Moore G., Kleanthous C., Ochsenbein F., Shirasu K., Guerois R. Structural and functional analysis of SGT1 reveals that its interaction with HSP90 is required for the accumulation of Rx, an R protein involved in plant immunity. Plant Cell. 2007;19:3791-3804. DOI 10.1105/tpc.107.050427.

12. Brandes J., Wetter C., Bagnall R.H., Larson R.H. Size and shape of the particles of Potato virus S, Potato virus M, and Carnation latent virus. Phytopathol. 1959;49(7):443-446.

13. Brault V., Mutterer J., Scheidecker D., Simonis M.T., Herrbach E., Richards K., Ziegler-Graff V. Effects of point mutations in the readthrough domain of the beet western yellows virus minor capsid protein on virus accumulation in planta and on transmission by aphids. J. Virology. 2000;74(3):1140-1148. DOI 10.1128/JVI.74.3.1140-1148.2000.

14. Briggs A.G., Bent A.F. Poly(ADP-ribosyl)ation in plants. Trends Plant Sci. 2011;16:372-380. DOI 10.1016/j.tplants.2011.03.008.

15. Canadian Food Inspection Agency, Plant Health Science. Potato moptop virus PMTV – Fact Sheet. Available at http://www.inspection.gc.ca/plants/plant-pests-invasive-species/diseases/pmtv/fact-sheet/eng/1327452784025/1327452899956.

16. Candresse T., Marais A., Faure C., Dubrana M.P., Gombert J., Bendahmane A. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the Potato Rx resistance gene in transgenic tomatoes. Mol. Plant-Microbe Interactions. 2010;23(4): 376-383. DOI 10.1094/MPMI-23-4-0376.

17. Canetta E., Kim S.H., Kalinina N.O., Shaw J., Adya A.K., Gillespie T., Brown J.W., Taliansky M.A plant virus movement protein forms ringlike complexes with the major nucleolar protein, fibrillarin, in vitro. J. Mol. Biol. 2008;376(4):932-937. DOI 10.1016/j.jmb.2007.12.039.

18. Cavatorta J., Perez K.W., Gray S.M., Van Eck J., Yeam I., Jahn M. Engineering virus resistance using a modified potato gene. Plant Biotechnol.J. 2011;9(9):1014-1021. DOI 10.1111/j.1467-7652.2011.00622.x.

19. Čeřovská N., Pečenková T., Filigarová M., Dědič P. Sequence analysis of the Czech potato mop-top virus (PMTV) isolate Korneta-Nemilkov. Folia Microbiol. 2007;52(1):61-64.

20. Davidson T.M.W. Breeding for resistance to virus disease of the potato (Solanum tuberosum) at the Scottish Plant Breeding Station. Scottish Plant Breed. Station 59th Annu. Rep. 1980;100-108.

21. Deslandes L., Rivas S. The plant cell nucleus: a true arena for the fight between plants and pathogens. Plant Signal Behav. 2011;6(1):42-48. DOI 10.4161/psb.6.1.13978.

22. Deslandes L., Rivas S. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 2012;17(11):644-655. DOI 10.1016/j.tplants.2012.06.011.

23. Dziewonska M.A., Ostrowska K. Resistance to Potato virus M in certain wild potato species. Potato Res. 1978;21:129-131. DOI 10.1007/BF02361611.

24. Farnham G., Baulcombe D.C. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl. Acad. Sci. USA. 2006;103(49):18828-18833. DOI 10.1073/pnas.0605777103.

25. Flor H.H. Current status of the gene-for-gene concept. Ann. Rev. Phytopathol. 1971;9:275-296. DOI 10.1146/annurev.py.09.090171. 001423.

26. Galvino-Costa S.B.F., Figueira A.D.R., Camargos V.V., Geraldino P.S., Hu X.J., Nikolaeva O.V., Kerlan C., Karasev A.V. A novel type of Potato virus Y recombinant genome, determined for the genetic strain PVYE. Plant Path. 2012;61:388-398. DOI 10.1111/j.13653059.2011.02495.x.

27. Gill U.S., Lee S., Mysore K.S. Host versus nonhost resistance: distinct wars with similar arsenals. Phytopathol. 2015;105(5):580-587. DOI 10.1094/PHYTO-11-14-0298-RVW.

28. Greco A. Involvement of the nucleolus in replication of human viruses. Rev. Med. Virol. 2009;19(4):201-214. DOI 10.1002/rmv.614.

29. Hafez S.L., Sundararaj P. Management of Corky Ringspot Disease of Potatoes in the Pacific Northwest. University of Idaho. Extension. 2009;1-6.

30. Hämäläinen J.H., Kekarainen T., Gebhardt C., Watanabe K.N., Valkonen J.P.T. Recessive and dominant genes interfere with the vascular transport of Potato virusA in diploid potatoes. Mol. Plant Microbe Interact. 2000;13:402-412. DOI 10.1094/MPMI.2000.13.4.402.

31. Hämäläinen J.H., Sorri V.A., Watanabe K.N., Gebhardt C., Valkonen J.P.T. Molecular examination of a chromosome region that controls resistance to potato Y and A potyviruses in potato. Theor. Appl. Genet. 1998;96:1036-1043. DOI 10.1007/s001220050836.

32. Harris C.J., Slootweg E.J., Goverse A., Baulcombe D.C. Stepwise artificial evolution of a plant disease resistance gene. Proc. Natl. Acad. Sci. USA. 2013;110(52):21189-21194. DOI 10.1073/pnas.1311134110.

33. Hiscox J.A. RNA viruses: hijacking the dynamic nucleolus. Nat. Rev. Microbiol. 2007;5(2):119-127. DOI 10.1038/nrmicro1597.

34. Ivanov K.I., Eskelin K., Lohmus A., Makinen K. Molecular and cellular mechanisms underlying potyvirus infection. J. General Virol. 2014;95:1415-1429. DOI 10.1099/vir.0.064220-0.

35. Jaag H.M., Kawchuk L., Rohde W., Fischer R., Emans N., Prűfer D. An unusual internal ribosomal entry site of inverted symmetry directs expression of a potato leafroll polerovirus replication-associated protein. Proc. Natl. Acad. Sci. USA. 2003;100(15):8939-8944. DOI 10.1073pnas.1332697100.

36. Ji Y., Tulin A.V. Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins. Int. J. Mol. Sci. 2013;14:1616816183. DOI 10.3390/ijms140816168.

37. Jones J.D., Dangl J.L. The plant immune system. Nature. 2006;444 (7117):323-329. DOI 10.1038/nature05286.

38. Karasev A.V., Gray S.M. Continuous and emerging challenges of Potato virus Y in potato. Annu. Rev. Phytopathol. 2013;51:571-586. DOI 10.1146/annurev-phyto-082712-102332.

39. Kelly K.B., Whitworth J.L., Novy R.G. Mapping of the potato leafroll virus resistance gene, Rlretb, from Solanum etuberosum identifies interchromosomal translocations among its E-genome chromosomes 4 and 9 relative to the A-genome of Solanum L. sect. Petota. Mol. Breeding. 2009;23:489-500. DOI 10.1007/s11032-008-9251-x.

40. Kim S.H., Macfarlane S., Kalinina N.O., Rakitina D.V., Ryabov E.V., Gillespie T., Haupt S., Brown J.W., Taliansky M. Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc. Natl. Acad. Sci. USA. 2007a;104(26):11115-11120. DOI 10.1073/pnas.0704632104.

41. Kim S.H., Ryabov E.V., Kalinina N.O., Rakitina D.V., Gillespie T., MacFarlane S., Haupt S., Brown J.W.S., Taliansky M. Cajal bodies and the nucleolus are required for a plant virus systemic infection. EMBO J. 2007b;26:2169-2179. DOI 10.1038/sj.emboj.7601674.

42. Kogovšek P., Kladnik A., Mlakar J., Žnidarič M.T., Dermastia M., Ravnikar M., Pompe-Novak M. Distribution of Potato virus Y in potato plant organs, tissues, and cells. Phytopathol. 2011;101:12921300. DOI 10.1094/PHYTO-01-11-0020.

43. Kotova E., Jarnik M., Tulin A.V. Poly (ADP-ribose) polymerase 1 is required for protein localization to Cajal body. PLoS Genet. 2009;5(2):e1000387. DOI 10.1371/journal.pgen.1000387.

44. Latvala-Kilby S., Aura J.M., Pupola N., Hannukkala A., Valkonen J. P.T. Detection of Potato mop-top virus in potato tubers and sprouts: Combinations of RNA2 and RNA3 variants and incidence of symptomless infections. Phytopathol. 2009;99:519-531. DOI 10.1094/PHYTO-99-5-0519.

45. Lee L., Kaplan I.B., Ripoll D.R., Liang D., Palukaitis P., Gray S.M. A surface loop of the Potato leafroll virus coat protein is involved in virion assembly, systemic movement, and aphid transmission. J. Virol. 2005;79(2):1207-1214. DOI 10.1128/JVI.79.2.1207–1214.2005.

46. Lee S., Whitaker V.M., Hutton S.F. Mini review: Potential applications of non-host resistance for crop improvement. Front. Plant Sci. 2016;7:997. DOI 10.3389/fpls.2016.00997.

47. Lico C., Benvenuto E., Baschieri S. The two-faced Potato virus X: from plant pathogen to smart nanoparticle. Front. Plant Sci. 2015;6:1009. DOI 10.3389/fpls.2015.01009.

48. Łoniewska-Lwowska A., Chełstowska S., Zagórski-Ostoja W., Pałucha A. Elements regulating Potato leafroll virus sgRNA1 translation are located within the coding sequences of the coat protein and read-through domain. Acta Biochim. Polonica. 2009;56(4):619-625.

49. Love A.J., Yu C., Petukhova N.V., KalininaN.O., Chen J., TalianskyM.E. Cajal bodies and their role in plant stress and disease responses. RNA Biology. 2016. DOI 10.1080/15476286.2016.1243650.

50. Luo X., Kraus W.L. On PAR with PARP: cellular stress signaling through poly(ADP-ribose) and PARP. Genes Dev. 2012;26:417-432. DOI 10.1101/gad.183509.111.

51. MacFarlane S.A. Molecular biology of the tobraviruses. J. Gen. Virol. 1999;80(11):2799-2807. DOI 10.1099/0022-1317-80-11-2799.

52. MacFarlane S.A. Tobraviruses – plant pathogens and tools for biotechnology. Mol. Plant Pathol. 2010;11(4):577-583. DOI 10.1111/j.13643703.2010.00617.x.

53. Marczewski W., Flis B., Syller J., Schafer-Pregl R., Gebhardt C. A major quantitative trait locus for resistance to Potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol. Plant-Microbe Interact. 2001;14(12):1420-1425. DOI 10.1094/MPMI.2001.14.12.1420.

54. Massumi H., Poormohammadi S., Pishyar S., Maddahian M., Heydarnejad J., Hosseini-Pour A., Bysterveldt K., Varsani A. Molecular characterization and field survey of Iranian potato virus X isolates. Virus Dis. 2014;25(3):338-344. DOI 10.1007/s13337-014-0222-z.

55. Mayor A., Martinon F., DeSmedt T., Petrilli V., Tschopp J. A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nature Immunol. 2007; 8:497-503. DOI 10.1038/ni1459.

56. Meier I. Composition of the plant nuclear envelope: theme and variations. J. Exp. Botany. 2007;58:27-34. DOI 10.1093/jxb/erl009.

57. Morozov S.Y., Zakchariev V.M., Chernow B.K., Prasolov V.S., Kozlov Y.V., Atabekov J.G. The analysis of the primary structure and localization of the coat protein gene on the genomic RNA of Potato virus X. Dokl. Akad. Nauk SSSR. 1983;271:211-215.

58. Muthamilarasan M., Prasad M. Plant innate immunity: an updated insight into defense mechanism. J. Biosci. 2013;38(2):433-449. DOI 10.1007/s12038-013-9302-2.

59. Novy R.G., Gillen A.M., Whitworth J.L. Characterization of the expression and inheritance of potato leafroll virus (PLRV) and potato virus Y (PVY) resistance in three generations of germplasm derived from Solanum etuberosum. Theor. Appl. Genet. 2007;114:11611172. DOI 10.1007/s00122-007-0508-2.

60. Oh S.K., Lee S., Chung E., Park J.M., Yu S.H., Ryu C.M., Choi D. Insight into Types I and II nonhost resistance using expression patterns of defense-related genes in tobacco. Planta. 2006;223(5):1101-1107. DOI 10.1007/s00425-006-0232-1.

61. Palukaitis P. Resistance to viruses of potato and their vectors. Plant Pathol. J. 2012;28(3):248-258. DOI 10.1099/vir.0.82477-0.

62. Peter K.A., Liang D., Palukaitis P., Gray S.M. Small deletions in the potato leafroll virus readthrough protein affect particle morphology, aphid transmission, virus movement and accumulation. J. General Virol. 2008;89(8):2037-2045. DOI 10.1099/vir.0.83625-0.

63. Piche L.M., Singh R.P., Nie X., Gudmestad N.C. Diversity among Potato virus Y isolates obtained from potatoes grown in the United States. Phytopathol. 2004;94(12):1368-1375. DOI 10.1094/PHYTO.2004.94.12.1368.

64. Ploeg A.T., Robinson D.J., Brown D.J.F. RNA-2 of tobacco rattle virus encodes the determinants of transmissibility by trichodorid vector nematodes. J. General Virol. 1993;74:1463-1466.

65. Rahman M.S., Akanda A.M. Effect of PLRV infected seed tuber on disease incidence, plant growth and yield parameters of potato. Bangladesh J. Agril. Res. 2010;35(3):359-366.

66. Rajamäki M.-L., Valkonen J.P.T. Control of nuclear and nucleolar localization of nuclear inclusion protein a of picorna-like Potato virus A in Nicotiana species. Plant Cell. 2009;21(8):2485-2502. DOI 10.1105/tpc.108.064147.

67. Ratcliff F., Harrison B.D., Baulcombe D.C. A similarity between viral defense and gene silencing in plants. Science. 1997;276(5318):15581560. DOI 10.1126/science.276.5318.1558.

68. Ratcliff F., Martin-Hernandez A.M., Baulcombe D.C. Technical advance: tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J. 2001;25(2);237-245. DOI 10.1046/j.09607412.2000.00942.x.

69. Reavy B., Arif M., Cowan G.H., Torrance L. Association of sequences in the coat protein/readthrough domain of potato mop-top virus with transmission by Spongospora subterranea. J. General Virol. 1998; 79:2343-2347.

70. Reddy D.V., Sudarshana M.R., Fuchs M., Rao N.C., Thottappilly G. Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv. Virus Res. 2009;75:185220. DOI 10.1016/S0065-3527(09)07506-X.

71. Robinson D.J., Dale M.F.B., Todd D. Factors affecting the development of disease symptoms in potatoes infected by Tobacco rattle virus. Eur. J. Plant Pathol. 2004;110:921-928. DOI 10.1007/s10658-0048950-3.

72. Ross H. The use of wild Solanum species in German potato breeding of the past and today. Am. Potato J. 1966;43:64-80.

73. Ross H. Potato Breeding – Problems and Perspectives. Berlin: P. Parey, 1986.

74. Salaman R.N., Pethybridge G. Some Recent Work on the Potato Blight. Rep. Intern. Potato Conf. Roy. Hort. Soc., 1921;122.

75. Schmitz J., Stussi-Garaud C., Tacke E., Prüfer D., Rohde W., Rohfritsch O. In situ localization of the putative movement protein (pr17) from potato leafroll luteovirus (PLRV) in infected and transgenic potato plants. Virol. 1997;235(2):11-22. DOI 10.1006/viro.1997.8679.

76. Scholthof K.-B.G., Adkins S., Czosnek H., Palukaitis P., Jacquot E., Hohn T., Hohn B., Saunders K., Candresse T., Ahlquist P., Hemenway C., Foster G.D. Top 10 plant viruses in molecular plant pathology. Mol. Plant Pathology. 2011;12(9):938-954. DOI 10.1111/J.13643703.2011.00752.X.

77. Schulz P., Jansseune K., Degenkolbe T., Méret M., Claeys H., Skirycz A., Teige M., Willmitzer L., Hannah M.A. Poly(ADP-ribose) polymerase activity controls plant growth by promoting leaf cell number. PLoS ONE. 2014;9(2):e90322. DOI 10.1371/journal.pone.0090322.

78. Senanayake D.M.J.B., Mandal B. Expression of symptoms, viral coat protein and silencing suppressor gene during mixed infection of a N–Wi strain of potato virus Y and an asymptomatic strain of potato virus X. Virus Dis. 2014;25(3):314-321. DOI 10.1007/s13337-0140204-1.

79. Senshu H., Yamaji Y., Minato N., Shiraishi T., Maejima K., Hashimoto M., Miura C., Neriya Y., Namba S. A dual strategy for the suppression of host antiviral silencing: two distinct suppressors for viral replication and viral movement encoded by potato virus M. J. Virology. 2011;85(19):10269-10278. DOI 10.1128/JVI.05273-11.

80. Shaw J., Love A.J., Makarova S.S., Kalinina N.O., Harrison B.D., Taliansky M.E. Coilin, the signature protein of Cajal bodies, differentially modulates the interactions of plants with viruses in widely different taxa. Nucleus. 2014;5(1):85-94. DOI 10.4161/nucl.28315.

81. Singh R.P., Valkonen J.P.T., Gray S.M., Boonham N., Jones R.A.C., Kerlan C., Schubert J. Discussion paper: The naming of Potato virus Y strains infecting potato. Arch. Virol. 2008;153(1):1-13. DOI 10.1007/s00705-007-1059-1.

82. Solomon R.M., Wastie R.L. Management of potato mop-top virus and its vector by breeding and selection. Developments in Applied Biology II. Viruses with Fungal Vectors. Ed. by J.I. Cooper, M.J.C. Asher. UK. Wellesbourne: Assoc. Appl. Biol., 1988;271-279.

83. Solomon-Blackburn R.M., Barker H. A review of host major-gene resistance to Potato viruses X, Y, A, and V in potato: genes, genetics and mapped locations. Heredity. 2001;86:8-16.

84. Solovyev A.G., Savenkov E.I. Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. J. Exp. Bot. 2014;65(7):1689-1697. DOI 10.1093/jxb/ert449.

85. Sudarshana M.R., Roy G., Falk B.W. Methods for engineering resistance to plant viruses. Methods Mol. Biol. 2007;354:183-195. DOI 10.1385/1-59259-966-4:183.

86. Tacke E., Priifer D., Schmitz J., Rohde W. The potato leafroll luteovirus 17K protein is a single-stranded nucleic acid-binding protein. J. General Virol. 1991;72:2035-2038. DOI 10.1099/0022-1317-728-2035.

87. Taliansky M.E., Brown J.W., Rajamäki M.L., Valkonen J.P., Kalinina N.O. Involvement of the plant nucleolus in virus and viroid infections: parallels with animal pathosystems. Adv. Virus Res. 2010; 77:119-158. DOI 10.1016/B978-0-12-385034-8.00005-3.

88. Tameling W.I., Baulcombe D.C. Physical association of the NB-LRR resistance protein Rx with a Ran GTPase-activating protein is required for extreme resistance to Potato virus X. Plant Cell. 2007; 19:1682-1694.

89. Valkonen J. Virus-host interactions and breeding for resistance in potato. Breeding Sci. 2015;65(1):69-76. DOI 10.1270/jsbbs.65.69

90. Valkonen J.P.T., Jones R.A.C., Slack S.A., Watanabe K.N. Resistance specificities to viruses in potato: Standardization of nomenclature. Plant Breed. 1996;115:433-438.

91. Valkonen J.P.T., Slack S.A., Plaisted R.L., Watanabe K.N. Extreme resistance is epistatic to hypersensitive resistance to potato virus Yo in Solanum tuberosum subsp. andigena-derived potato genotype. Plant Disease. 1994;78(12):1177-1180.

92. Verchot-Lubicz J., Ye C-M., Bamunusinghe D. Molecular biology of potexviruses: recent advances. J. General Virol. 2007;88:1643-1655. DOI 10.1099/vir.0.82667-0.

93. Visser P.B., Brown D.J.F., Brederode F.Th., Bol J.F. Nematode transmission of tobacco rattle virus serves as a bottleneck to clear the virus population from defective interfering RNAs. Virol. 1999; 263(1):155-165. DOI 10.1006/viro.1999.9901.

94. Wales S., Platt H.W., Cattlin N. Diseases, Pests and Disorders of Potatoes. London: Manson Publ. Ltd., 2008;75-76.

95. Warren M., Krűger K., Schoeman A.S. Potato Virus Y (PVY) and Potato Leafroll Virus (PLRV): Literature Review for Potatoes South Africa. Pretoria: Univ. of Pretoria, Faculty of Nat. and Agricult. Sci., Department of Zool. and Entomol., 2005.

96. Xu H., D’Aubin J., Nie J. Genomic variability in Potato virus M and the development of RT-PCR and RFLP procedures for the detection of this virus in seed potatoes. Virol. J. 2010;7:25. DOI 10.1186/1743422X-7-25.


Рецензия

Просмотров: 3879


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)