Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

Цитоплазматическая мужская стерильность и перспективы ее использования в селекционно-генетических исследованиях и семеноводстве картофеля

Аннотация

Возрастающий интерес к цитоплазматической мужской стерильности (ЦМС) и поиску генов восстановления фертильности пыльцы (Rf) у картофеля обусловлен появлением нового направления в современной селекции этой важной культуры, которое заключается в создании гетерозисных гибридов, полученных от скрещиваний инбредных диплоидных линий. В статье дается обзор основных результатов исследований генетических систем ЦМС-Rf, проведенных на разных видах культурных растений, обсуждаются современные подходы к изучению молекулярных механизмов ЦМС и восстановления фертильности пыльцы, а также имеющиеся на сегодняшний день литературные данные по состоянию этих исследований у картофеля. Рассматривается природа химерных митохондриальных генов, обусловливающих цитоплазматическую мужскую стерильность, обсуждаются особенности структуры и функции генов восстановления фертильности пыльцы; приведены примеры генетических систем ЦМС-Rf у культурных видов растений, в том числе у представителей семейства пасленовых. Освещаются основные результаты исследований молекулярных механизмов ЦМС и восстановления фертильности в постгеномную эру, полученные на разных видах растений с использованием методов транскриптомного и протеомного анализов. Как и у большинства видов растений, у картофеля признак цитоплазматической мужской стерильности имеет гибридную природу. Рассматриваются результаты исследований генетического контроля мужской стерильности у картофеля, которые были выполнены с использованием традиционных подходов (гибридологического анализа) и привели к формированию концепции генно-цитоплазматической мужской стерильности ряда видов секции Petota рода Solanum. Дана характеристика различных типов цитоплазм картофеля, ассоциированных с проявлением мужской стерильности. Согласно классификации Hosaka, Sanetomo (2012), они включают: Т/бета, W/гамма и D, каждый из которых отличается по фенотипическому проявлению признака мужской стерильности, а также по частоте встречаемости в генофонде селекционных сортов и у разных видов картофеля. Представлены результаты исследований по разработке ДНК-маркеров для идентификации различных типов цитоплазм картофеля.

Об авторах

И. Н. Анисимова
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова» (ВИР)
Россия
Санкт-Петербург


Т. А. Гавриленко
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова» (ВИР); Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный университет»
Россия

Санкт-Петербург;

биологический факультет



Список литературы

1. Abdalla M.M.F., Hermsen J.G.T. The plasmon-genic basis of pollen lobedness and tetrad sterility in Solanum verrucosum hybrids and duplicate linkage groups. Genetica. 1971;42:261-270.

2. Abdelnoor R.V., Yule R., Elo A., Christensen A.C., Meyer-Gauen G., Mackenzie S.A. Substoichiometric shifting in the plant mitochondrial genome is influenced by a gene homologous to MutS. Proc. Natl. Acad. Sci. USA. 2003;100(10):5968-5973.

3. Ahmad R., Farhatullah Khan R.S., Quiros C.F. Inheritance of fertility restorer gene for cytoplasmic male-sterility in B. napus and identification of closely linked molecular markers to it. Euphytica. 2013; 194(3):351-360. DOI 10.1007/s10681-013-0942-y.

4. Anisimova I.N., Alpat’eva N.V., Karabicina Ju.I., Kuznecova E.B., Rozhkova V.T., Gavrilova V.A. Identification of genes of sunflower agronomic traits based on molecular screening. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC. 2015;29(7):39-42.

5. Anisimova I.N., Alpatieva N.V., Rozhkova V.T., Kuznetsova E.B., PinaevA.G., Gavrilova V.A. Polymorphism among RFL-PPR homologs in sunflower (Helianthus annuus L.) lines with varying ability for the suppression of the cytoplasmic male sterility phenotype. Rus. J. Genet. 2014;50(7):712-721. DOI 10.1134/S1022795414070023.

6. Anisimova I.N., Gavrilova V.A. Structural and functional diversity of genes suppressing phenotype of cytoplasmic male sterility in plants. Trudy po prikladnoy botanike, genetike i selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 2012;170:3-16.

7. Bentolila S., Alfonso A.A., Hanson M.R. A pentatricopeptide repeatcontaining gene restores fertility to cytoplasmic male-sterile plants. Proc. Natl. Acad. Sci. USA. 2002;16:10887-10892. DOI 10.1073/pnas.102301599.

8. Bisht D.S., Chamola R., Nath M., Shripad R., Bhat S. Molecular mapping of fertility restorer gene of an alloplasmic CMS system in Brassica juncea containing Moricandia arvensis cytoplasm. Mol. Breeding. 2015;35:14. DOI 10.1007/s11032-015-0225-5.

9. Bragin A.G., Ivanov M.K., Fedoseeva L.A., Dymshic G.M. Analysis of mitochondrial DNA heteroplasmy in fertile and owen CMS sugar beet (Beta vulgaris) plants. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2011;15(3):524-530.

10. Brown G.G., Formanova N., Jin H., Wargachuk R., Dendy C., Patil P., Laforest M., Zhang J., Cheung W.Y., Landry B.S. The radish Rfo restorer gene of Ogura cytoplasmic male sterility encodes a protein with multiple pentatricopeptide repeats. Plant J. 2003;35(2):262272. DOI 10.1046/j.1365-313X.2003.01799.

11. Camadro E.L., Carputo D., Peloquin S.J. Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor. Appl. Genet. 2004;109:1369-1376. DOI 10.1007/s00122004-1753-2.

12. Cardi T., Bastia T., Monti L., Earle E.D. Organelle DNA and male fertility variation in Solanum spp. and interspecific somatic hybrids. Theor. Appl. Genet. 1999;99:819-828.

13. Carrol C.P. The inheritance and expression of sterility in hybrids of dihaploid and cultivated diploid potatoes. Genetica. 1975;45(2):149-162.

14. Chase C.D. Cytoplasmic male sterility: a window to the world of plant mitochondrial-nuclear interactions. Trends in Genetics. 2006;23(3): 81-90. DOI 10.1016/j.tig.2006.12.004.

15. Chase S.S. Analitic breeding in Solanum tuberosum L. – a scheme utilizing partenotes and other diploid stocks. Can. J. Genet. Cytol. 1963;5:359-363.

16. Chen L., Liu Y.G. Male sterility and fertility restoration in crops. Annu. Rev. Plant Biol. 2014;65:579-606. DOI 10.1146/annurevarplant-050213-040119.

17. Cui X., Wise R.P., Schnable P.S. The Rf2 nuclear restorer gene of malesterile T-cytoplasm maize. Science. 1996;272(266):1334-1336. DOI 10.1126/science.272.5266.1334.

18. Dahan J., Mireau H. The Rf and Rf-like PPR in higher plants, a fastevolving subclass of PPR genes. RNA Biol. 2013;10(9):1469-1476. DOI 10.4161/rna.25568.

19. Danilenko N.G., Davydenko O.G. Miry genomov organell [The worlds of organelle genomes]. Minsk, Tekhnalogiya Publ., 2003.

20. de la Canal L., Crouzillat D., Quetier F., Ledoigt G. A transcriptional alteration on the atp9 gene is associated with a sunflower malesterile cytoplasm. Theor. Appl. Genet. 2001;102(8):1185-1189. DOI 10.1007/s001220100558.

21. Desloire S., Gherbi H., Laloui W., Marhadour S., Clouet V., Cattolico L., Falentin L., Giancola S., Renard M., Budar F., Small I., Caboche M., Delourme R.M., Bendahmane A. Identification of the fertility restoration locus, Rfo, in radish, as a member of the pentatricopeptide-repeat protein family. EMBO Rep. 2003;4(6):588594. DOI 10.1038/sj.embor.embor848.

22. Dionne L.A. Sterility in Solanum demissum. Am. Potato J. 1961;38:117120. DOI 10.1007/s11540-011-9196-z.

23. Dong D.K., Li Z., Yuan F.J., Zhu S.L., Chen P., Yu W., Yang Q.H., Fu X.J., Yu X.M., Li B.Q., Zhu D.H. Inheritance and fine mapping of a restorer-of-fertility (Rf) gene for the cytoplasmic male sterility in soybean. Plant Sci. 2012;188-189:36-40. DOI 10.1016/j.plantsci.2012.02.007.

24. Du K., Liu Q., Wu X., Jiang J., Wu J., Fang Y., Li A., Wang Y. Morphological structure and transcriptome comparison of the cytoplasmic male sterility line in Brassica napus (SaNa-1A) derived from somatic hybridization and its maintainer line SaNa-1B. Front. Plant Sci. 2016;7:1313. DOI 10.3389/fpls.2016.01313.

25. Dymshits G.M. Surprises of mitochondrial genome. Priroda = Nature (Moscow). 2002;6:5461.

26. Endelman J.B., Jansky S.H.Genetic mapping with an inbred line-derived F2 population in potato. Theor. Appl. Genet. 2016;129(5):935-943. DOI 10.1007/s00122-016-2673-7.

27. Fujii S., Bond Ch.S., Small I.D. Selection patterns on restorer-like genes reveals a conflict between nuclear and mitochondrial genomes throughout angiosperm evolution. Proc. Natl. Acad. Sci. USA. 2011;108(4):1723-1728. DOI 10.1073/pnas.1007667108.

28. Fujii S., Toriyama K. Supressed expression of retrograde-regulated male sterility restores pollen fertility in cytoplasmic male sterile rice plants. Proc. Natl. Acad. Sci. USA. 2009;106(23):9513-9518. DOI 10.1073/pnas.0901860106.

29. Gabay-Laughnan S., Chase C.D., Ortega V.M., Zhao L.M. Moleculargenetic characterization of CMS-S restorer-of fertility alleles identified in Mexican maize and teosinte. Genetics. 2004;166(2):959-970.

30. Gavrilenko T.A., Antonova O.Ju., Kostina L.I. Study of genetic diversity in potato cultivars using PCR analysis of organelle DNA. Genetika = Genetics (Moscow). 2007;43(11):1301-1305.

31. Gavrilenko T., Antonova O., Shuvalova A., Krylova E., Alpatyeva N., Spooner D., Novikova L. Genetic diversity and origin of cultivated potatoes based on plastid microsatellite polymorphism. Genet. Resour. Crop Evol. 2013;60(7):1997-2015. DOI 10.1007/s10722-013-9968-1.

32. Gavrilenko T., Antonova O., Thieme R., Szczerbakowa A., Wielgat B. Inheritance of chloroplast and mitochondrial DNAs in interspecific somatic hybrids of potato. Eur. Assoc. of Potato Res. Bilbao, 2005; 652-654.

33. Gebhardt C., Bellin D., Henselewski H., LehmannW., SchwarzfischerJ., Valkonen J.P.T. Marker-assisted combination of major genes for pathogen resistance in potato. Theor. Appl. Genet. 2006;112:14581464. DOI 10.1007/s00122-006-0248-8.

34. Gillman J.-D., Bentolila S., Hanson M.-R. The petunia restorer of fertility proteins are part of a large mitochondrial complex that interacts with transcripts of the CMS-associated loci. Plant J. 2007;49(2):217-227. DOI 10.1111/j.1365-313X.2006.02953.x.

35. Grun P. Changes of cytoplasmic factors during the evolution of the cultivated potato. Evolution. 1970a;24:188-198.

36. Grun P. Cytoplasmic sterilities that separate the cultivated potato from its putative diploid ancestors. Evolution. 1970b;24:750-758.

37. Grun P. Cytoplasmic sterilities that separate the Group Tuberosum cultivated potato from its putative tetraploid ancestor. Evolution. 1973; 27:633-643.

38. Grun P. Evolution of cultivated potato: a cytoplasmic analysis. The Biology and Taxonomy of the Solanaceae. Eds. J.G. Hawkes, R.N. Lester, A.D. Skelding. Linn. Soc. Ser. 1979;7:655-665.

39. Grun P., Aubertin M. Evolutionary pathways of cytoplasmic male sterility in Solanum. Genetics. 1965;51:399-409.

40. Grun P., Aubertin M., Radlow A. Multiple differentiation of plasmons of diploid species of Solanum. Genetics. 1962;47(10):1321-1333.

41. Grun P., Ochoa C., Capage D. Evolution of cytoplasmic factors in tetraploid cultivated potatoes. Am. J. Botany. 1977;64:412-420.

42. Gulyas G., Shin Y., Kim H., Lee J.-S., Hirata Y. Altered transcript reveals an Orf 507 sterility-related gene in chili pepper (Capsicum annuum L.). Plant Mol. Biol. Rep. 2010;28:605-612. DOI 10.1007/s11105-010-0182-4.

43. Hanneman R.E., Peloquin S.J. Genetic-cytoplasmic male sterility in progeny of 4x–2x crosses in cultivated potatoes. Theor. Appl. Genet. 1981;59(1):53-56.

44. Hanson M.R., Bentolila S. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell. 2004;16(1):154-169. DOI 10.1105/tpc.015966.

45. Hawkes J.G. The Potato: Evolution, Biodiversity and Genetic Resources. London: Belhaven Press, 1990.

46. Hermundstad S.A., Peloquin S.J. Male fertility and 2n pollen production in haploid-wild species hybrids. Am. Potato J. 1985;62:479-487.

47. Hilali A., Lauer F.I., Veilleux R.E. Reciprocal differences between hybrids of Solanum tuberosum groups tuberosum (haploid) and Phureja. Euphytica. 1987;36:631-639.

48. Hoopes R.W., Plaisted R.L., Cubillos A.G. Yield and fertility of reciprocal-cross tuberosum-andigena hybrids. Am. Potato J. 1980;57: 275-284. DOI 10.1007/BF02855305.

49. Horn R. Recombination: Cytoplasmic male sterility and fertility restoration in higher plants. Progress Botany. 2006;67:31-52. DOI 10.1007/3-540-27998-9_2.

50. Horn R., Hamrit S. Gene cloning and characterization. Genetics, Genomics and Breeding of Sunflower. Eds. J. Hu, G. Seiler, C. Kole. USA: Sci. Publ., 2010;173-219.

51. Hosaka K. Distribution of the 241 bp deletion of chloroplast DNA in wild potato species. Am. J. Potato Res. 2002;79:119-123. DOI 10.1007/BF02881520.

52. Hosaka K., Hanneman R.E. Genetics of self-compatibility in a selfincompatible wild diploid potato species Solanum chacoense. 2. Localization of an S locus inhibitor (Sli) gene on the potato genome using DNA markers. Eutphytica. 1998;103:265-271.

53. Hosaka K., Sanetomo R. Comparative differentiation in mitochondrial and chloroplast DNA among cultivated potatoes and closely related wild species. Genes Genet. Syst. 2009;84(5):371-378. DOI org/10.1266/ggs.84.371.

54. Hosaka K., Sanetomo R. Development of a rapid identification method for potato cytoplasm and its use for evaluating Japanese collections. Theor. Appl. Genet. 2012;125:1237-1251. DOI 10.1007/s00122012-1909-4.

55. Hougas R.W., Peloquin S.J. A haploid plant of the potato variety Katahdin. Nature. 1957;180:1209-1210.

56. Hougas R.W., Peloquin S.J. The potential of potato haploids in breeding and genetic research. Am. Potato J. 1958;35:701-707.

57. Hu J., Wang K., Huang W., Liu G., Gao Y., WangJ., HuangQ., JiY., QinX., Wan L., Zhu R., Li S., Yang D., Zhua Y. The rice pentatricopeptide repeat protein RF5 restores fertility in Hong-Lian cytoplasmic malesterile lines via a complex with the glycine-rich protein GRP162. Plant Cell. 2012;24:109-122. DOI 10.1105/tpc.111. 093211.

58. Huang S., Shingaki-Wells R.N., Taylor N.L., Millar A.H. The rice mitochondria proteome and its response during development and to the environment. Front. Plant Sci. 2013;4:16. DOI 10.3389/fpls.2013. 00016.

59. Huang W., Yu C., Hu J., Wang L., Dan Z., Zhou W., He C., Zeng Y., Yao G., Qi J., Zhang Z., Zhu R., Chen X., Zhu Y. Pentatricopeptiderepeat family protein RF6 functions with hexokinase 6 to rescue rice cytoplasmic male sterility. Proc. Natl. Acad. Sci. USA. 2015;112: 14984-14989. DOI 10.1073/pnas.1511748112.

60. Irikura Y. Studies on interspecific crosses of tuber-bearing Solanums. I. Overcoming and cross-incompatibility between Solanum tuberosum and other Solanum species by means of induced polyploids and haploids. Res. Bull. Hokkaido Nat. Agr. Exp. Stat. 1968;92: 23-27.

61. Itabashi E., Iwata N., Fujii S., Kazama T., Toriyama K. The fertility restorer gene, Rf2, for lead rice-type cytoplasmic male sterility of rice encodes a mitochondrial glycine-rich protein. Plant J. 2011; 659(3):359-367. DOI 10.1111/j.1365-313X.2010.04427.x.

62. Ivanov M.K., Dymshits G.M. Cytoplasmic male sterility and restora­tion of pollen fertility in higher plants. Genetika = Genetics (Moscow). 2007;43(4):354-368.

63. Iwanaga M., Ortiz R., Cipar M.S., Peloquin S.J. A restorer gene for genetic-cytoplasmic male sterility in cultivated potatoes. Am. Potato J. 1991;68:19-28.

64. Jansky S.H., Charkowski A.O., Douches D.S., Gusmini G., Richael C., Bethke P.C., Spooner D.M., Novy R.G., De Jong H., De Jong W.S., Bamberg J., Thompson A., Bizimungu B., Holm D., Brown C., Haynes K., Sathuvalli V. Reinventing potato as a diploid inbred line. Crop Science. 2016;56:1412-1422. DOI 10.2135/cropsci2015. 12.0740.

65. Jansky S.H., Chung Y.S., Kittipadukal P. M6: A diploid potato inbred line for use in breeding and genetics research. J. Plant Reg. 2014;8:195-199. DOI 10.3198/jpr2013.05.0024crg.

66. Jansky S.H., Hamernik A.J. The introgression of 2x 1EBN Solanum species into the cultivated potato using Solanum verrucosum as a bridge. Genet. Resour. Crop Evol. 2009;56:1107-1115. DOI 10.1007/s10722-009-9433-3.

67. Jansky S.H., Peloquin S.J. Advantages of wild diploid Solanum species over cultivated diploid relatives in potato breeding programs. Genet. Resour. Crop Evol. 2006;53:669-674. DOI 10.1007/s10722-0042949-7.

68. Jo Y.D., Ha Y., Lee J., Park M., BergsmaA.C., Choi H.-Il, Goritschnig S., Kloosterman B., van Dijk P.J., Choi D., Kang B.-C. Fine mapping of Restorer-of-fertility in pepper (Capsicum annuum L.) identified a candidate gene encoding a pentatricopeptide repeat (PPR)-containing protein. Theor. Appl. Genet. 2016;129:2003. DOI 10.1007/s00122016-2755-6.

69. Jo Y.D., Kim Y.-M., Park M.-N., Yoo J.-H., Park M.K., Kim B.-D., Kang B.-C. Development and evaluation of broadly applicable markers for Restorer-of-fertility in pepper. Mol. Breeding. 2009;25(2): 187-201. DOI 10.1007/s11032-009-9318-3.

70. Jordan D.R., Klein R.R., Sakrewski K.G., Henzell R.G., Klein P.E., Mace E.S. Mapping and characterization of Rf5: a new gene conditioning pollen fertility restoration in A1 and A2 cytoplasm in sorghum (Sorghum bicolor (L.) Moench). Theor. Appl. Genet. 2011; 123(3):383-396. DOI 10.1007/s00122-011-1591-y.

71. Jordan D.R., Mace E.S., Henzell R.G., Klein P.E., Klein R.R. Molecular mapping and candidate gene identification of the Rf2 gene for pollen fertility restoration in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 2010;120(7):1279-1287. DOI 10.1007/s00122009-1255-3.

72. Joseph B., Corwin J.A., Li B., Atwell S., Kliebenstein D.J. Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. eLife. 2013;2:e00776. DOI 10.7554/eLife.00776.

73. Kazama T., Toriyama K. A pentatricopeptide repeat-containing gene that promotes the processing of aberrant atp6 RNA of cytoplasmic male-sterile rice. FEBS Lett. 2003;544(1-3):99-102. DOI 10.1016/S0014-5793(03)00480-0.

74. Khan M.R., Isshiki S. Development of a cytoplasmic male-sterile line of eggplant (Solanum melongena L.) with the cytoplasm of Solanum anguivi. Plant Breeding. 2011;130(2):256-260. DOI 10.1111/j.14390523.2010.01788.x.

75. Khan M.R., Isshiki S. Cytoplasmic male sterility in eggplant. Hortculture J. 2016;85(1):1-7. DOI doi: 10.2503/hortj.MI-IR03.

76. Kiani G. Validation of SSR markers linked to restoring fertility (Rf ) genes and genotyping of rice lines at Rf loci. J. Agr. Sci. Tech. 2015; 17:1931-1938.

77. Kim D.H., Kim B.-D. The organization of mitochondrial atp6 gene region in male fertile and CMS lines of pepper (Capsicum annuum L.). Curr. Genetics. 2006;49(1):59-67. DOI 10.1007/s00294-005-0032-3.

78. Kim K., Lee Y.-P., Lim H., Han T., Sung S.-K., Kim S. Identification of Rfd1, a novel restorer-of-fertility locus for cytoplasmic malesterility caused by DCGMS cytoplasm and development of simple PCR markers linked to the Rfd1 locus in radish (Raphanus sativus L.). Euphytica. 2010;175(1):79-90. DOI 10.1007/s10681010-0190-3.

79. Kim Y.M., Jo Y.D., Kang B.J. Haplotype analysis of CMS-associated DNA markers in sweet peppers. Crop Sci. Biotechnol. 2009;12:129132. DOI 10.1007/s12892-009-0114-8.

80. Kitazaki K., Arakawa T., Matsunaga M., Yui-Kurino R., Matsuhira H., Mikami T., Kubo T. Post-translational mechanisms are associated with fertility restoration of cytoplasmic male sterility in sugar beet (Beta vulgaris). PlantJ. 2015;83(2):290-299. DOI 10.1111/tpj.12888.

81. Klein R.R., Klein P.E., Chhabra A.K., Dong J., Pammi S., Childs K.L., Mullet J.E., Rooney W.L., Schertz K.F. Molecular mapping of the rf1 gene for pollen fertility restoration in sorghum (Sorghum bicolor L.). Theor. Appl. Genet. 2001;102(8):1206-1212. DOI 10.1007/s001220100575.

82. Klein R.R., Klein P.E., Mullet J.E., Minx P., Rooney W.L., Schertz K.F. Fertility restorer locus Rf1 of sorghum (Sorghum bicolor L.) encodes a pentatricopeptide repeat protein not present in the collinear region of rice chromosome 12. Theor. Appl. Genet. 2005;111(6):994-1012. DOI 10.1007/s00122-005-2011-y.

83. Koizuka N., Imai R., Fujimoto H., Hayakawa T., Kimura Y., KohnoMurase J., Sakai S., Imamura J. Genetic characterization of a pentatricopeptide repeat protein gene, orf687, that restores fertility in the cytoplasmatic male-sterile Kosena radish. Plant J. 2003;34(4):407-415. DOI 10.1046/j.1365313X.2003.01735.x.

84. Li J., Ding X., Han S., He T., Zhang H., Yang L., Yang S., Gai J. Differential proteomics analysis to identify proteins and pathways associated with male sterility of soybean using iTRAQ-based strategy. J. Proteomics. 2016;138:2-82. DOI 10.1016/j.jprot.2016.02.017.

85. Li J., Han S., Ding X., He T., Dai J., Yang S., Gai J. Comparative transcriptome analysis between the cytoplasmic male sterile line NJCMS1A and its maintainer NJCMS1B in soybean (Glycine max (L.) Merr.). PLoS ONE. 2015;10(5):e0126771. DOI 10.1371/journal.pone.0126771.

86. Lindhout P., Meijer D., Schotte T., Hutten R.C.B., Visser R.G.F., Eck H.J. Towards F1 hybrid seed potato breeding. Potato Res. 2011; 54:301-312. DOI 10.1007/s11540-011-9196-z.

87. Liu C., Liu Z., Li C., Zhang Y., Feng H. Comparative transcriptome analysis of fertile and sterile buds from a genetically male sterile line of Chinese cabbage. In Vitro Cell. Dev. Biol.-Plant. 2016;52(2):130139. DOI 10.1007/s11627-016-9754-9.

88. Liu C., Ma N., Wang P.-Y., Fu N., Shen H.-L. Transcriptome sequencing and de novo analysis of a cytoplasmic male sterile line and its nearisogenic restorer line in chili pepper (Capsicum annuum L.). PLoS ONE. 2013;8(6):e65209. DOI 10.1371/journal.pone.0065209.

89. Liu G., Tian H., Huang Y.-Q., Hu J., Ji Y.-X., Li S.-Q., Feng Y.-Q., Guo L., Zhu Y.-G. Alterations of mitochondrial protein assembly and jasmonic acid biosynthesis pathway in Honglian (HL)-type cytoplasmic male sterility rice. J. Biol. Chem. 2012;287(47):4005140060. DOI 10.1074/jbc.M112.382549.

90. Liu Z., Wang D., Feng J., Seiler G.J., Cai X., Jan C.-C. Diversifying sunflower germplasm by integration and mapping of a novel male fertility restoration gene. Genetics. 2013;193(3):727-737. DOI 10.1534/genetics.112.146092.

91. Lössl A., Adler N., Horn R., Frei U., Wenzel G. Chondriometype characterization of potato: mt a, β, γ, ε and novel plastidmitochondrial configurations in somatic hybrids. Theor. Appl. Genet. 1999;98:1-10. DOI 10.1007/s001220051202.

92. Lössl A., Götz M., Braun A., Wenzel G. Molecular markers for cytoplasm in potato: male sterility and contribution of different plastid-mitochondrial configurations to starch production. Euphytica. 2000;116:221-230. DOI 10.1023/A:1004039320227.

93. Lurin C., Andrés C., Aubourg S., Bellaoui M., Bitton F., Bruyère C., Caboche M., Debast C., Gualberto J., Hoffmann B., Lecharny A., Le Ret M., Martin-Magniette M.-L., Mireau H., Peeters N., Renou J.-P., Szurek B., Taconnat L., Small I. Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell. 2004;16:2089-2103. DOI 10.1105/tpc.104.022236.

94. Mackenzie S.A. The influence of mitochondrial genetics in crop breeding strategies. Plant Breed. Rev. 2004;25:115-138. DOI 10.1073/pnas.0609344104.

95. Maris B. Analysis of an incomplete diallel cross among three ssp. tuberosum varieties and seven long-day adapted ssp. andigena clones of the potato (Solanum tuberosum L.). Euphytica. 1989;41:163-182.

96. Mei S., Liu T., Wang Z. Comparative transcriptome profile of the cytoplasmic male sterile and fertile floral buds of radish (Raphanus sativusL.) Int. J. Mol. Sci. 2016;6(17):E42. DOI 10.3390/ijms17010042.

97. Meyer J., Pei D., Wise R.P. Rf8-Mediated T-urf13 transcript accumulation coincides with a pentatricopeptide repeat cluster on maize chromosome 2L. Plant Genome. 2011;4(3):283-299.

98. Mihovilovich E., Sanetomo R., Hosaka K., Ordoñez B., Aponte M., Bonierbale M. Cytoplasmic diversity in potato breeding: case study from the International Potato Center. Mol. Breeding. 2015;35:137146. DOI 10.1007/s11032-015-0326-1.

99. Mori K., Asano K., Tamiya S., Nakao T., Mori M. Challenges of breedingpotato cultivars to grow in various environments and to meet different demands. Breed. Science. 2015;65:3-16. DOI 10.1270/jsbbs.65.3.

100. Mori K., Mukojima N., Nakao T., Tamiya S., Sakamoto Y., Sohbaru N., Hayashi K., Watanuki H., Nara K., Yamazaki K., Ishii T., Hosaka K. Germplasm release: Saikai 35, a male and female fertile breeding line carrying Solanum phureja-derived cytoplasm and potato cyst nematode resistance (H1) and potato virus Y resistance (Rychc) genes. Am.J. Potato Res. 2012;89:63-72. DOI 10.1007/s12230-011-9221-4.

101. Ortiz R., Iwanaga M., Peloquin S.J. Male sterility and 2n pollen in 4x progenies derived from 4x × 2x and 4x × 4x crosses in potatoes. Potato Res. 1993;36:227-236.

102. Ortiz R., Simon P., Jansky S., Stelly D. Ploidy manipulation of the gametophyte, endosperm and sporophyte in nature and for crop improvement: a tribute to Professor Stanley J. Peloquin (1921–2008). Ann. Bot. 2009;104(5):795-807. DOI 10.1093/aob/mcp207.

103. Peloquin S.J., Jansky S.H., Yerk G.L. Potato cytogenetics and germplasm utilization. Am. Potato J. 1989a;66:629-638.

104. Peloquin S.J., Yerk G.L., Werner J.E., Darmo E. Potato breeding with haploids and 2n gametes. Genome. 1989b;31:1000-1004.

105. Perl A., Aviv D., Galun E. Protoplast-fusion-derived CMS potato cybrids: Potential seed-parents for hybrid, true-potato-seeds. J. Heredity. 1990;81(6):438-442.

106. Phumichai C., Mori M., KobayashiA., Kamijima O., Hosaka K. Toward the development of highly homozygous diploid potato lines using the self-compatibility controlling Sli gene. Genome. 2005;48:977984. DOI 10.1139/g05-066.

107. Plaisted R.L. Utilization of germplasm in breeding programs – use of cultivated tetraploids. Prospect for the Potato in the Developing Worlds. Lima, Peru: Intern. Potato Centre, 1972;23.

108. Powell W., Baird E., Duncan N., Waugh R. Chloroplast DNA variability in old and recently introduced potato cultivars. Ann. Appl. Biol. 1993;123:403-410.

109. Provan J., Powell W., Dewar H., Bryan G., Machray G.C., Waugh R. An extreme cytoplasmic bottleneck in the modern European cultivated potato (Solanum tuberosum) is not reflected in decreased levels of nuclear diversity. Proc. R. Soc. Lond. 1999;266:633-639.

110. Qin X., Warguchuk R., Arnal N., GaborieauL., Mireau H., Brown G.G. In vivo functional analysis of a nuclear restorer PPR protein. BMC Plant Biology. 2014;14:313. DOI 10.1186/s12870-014-0313-4.

111. Rhee S.-J., Seo M., Jang Y.J., Cho S., Lee G.P. Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics. 2015;16: 914. DOI 10.1186/s12864-015-2186-9.

112. Ross H. Potato Breeding – Problems and Perspectives. Berlin; Hamburg: Paul Parey, 1986.

113. Ross R.W., Peloquin S.J., Hougas R.W. Fertility of hybrids from Solanum phureja and haploid S. tuberosum matings. Eur. Potato J. 1964;7:81-89.

114. Saito T., Matsunaga H., Saito A., Hamato N., Koga T., Suzuki T., Yoshida T. A novel source of cytoplasmic male sterility and a fertility restoration gene in eggplant (Solanum melongena L.) lines. J. Japan. Soc. Hort. Sci. 2009;78(4):425-430.

115. Sanetomo R., Gebhardt C. Cytoplasmic genome types of European potatoes and their effects on complex agronomic traits. BMC Plant Biology. 2015;15:162. DOI 10.1186/s12870-015-0545-y.

116. Sanetomo R., Hosaka K. A maternally inherited DNA marker, descended from Solanum demissum (2n = 6x = 72) to S. tuberosum (2n = = 4x = 48). Breed. Sci. 2011;61:426-434. DOI 10.1270/jsbbs.61.426.

117. Sanetomo R., Hosaka K. A recombination-derived mitochondrial genome retained stoichiometrically only among Solanum verrucosum Schltdl. and Mexican polyploid wild potato species. Genet. Resour. Crop Evol. 2013;60:2391-2404.

118. Sanford J.C., Hanneman R.E., Jr. Large yield differences between reciprocal families of Solanum tuberosum. Euphytica. 1982;31:1-12.

119. Santini M., Camadro E.L., Marcellan O.N., Erazzu L.E. Agronomic characterization of diploid hybrid families derived from crosses between haploids of the common potato and three wild Argentinian tuber-bearing species. Am. J. Potato Res. 2000;77:211-218. DOI 10.1007/BF02855788.

120. Satoh M., Kubo T., Nishizawa S., Estiati A., Itchoda N., Mikami T. The cytoplasmic male-sterile type and normal type mitochondrial genomes of sugar beet share the same complement of genes of known function but differ in the content of expressed ORFs. Mol. Gen. Genomics. 2004;272:247-256. DOI 10.1007/s00438-0041058-9.

121. Schnable P.S., Wise R.P. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 1998;3:175-180.

122. Shabani A., Tahmasebi Enferadi S., Zaefizadeh M. Proteom-comparison of sunflower cytoplasmic male sterile and fertile restorer inbred lines. Int. Sci. Investigation J. 2013;2(3):69-77.

123. Shedge V., Arrieta-Montiel M., Christensen A.C., Mackenzie S.A. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell. 2007;19(4):1251-1264. DOI 10.1105/tpc.106.048355.

124. Shemesh-Mayer E., Ben-Michael T., Rotem N., Rabinowitch H.D., Doron-Faigenboim A., Kosmala A., Perlikowski D., Sherman A., Kamenetsky R. Garlic (Allium sativum L.) fertility: transcriptome and proteome analyses provide insight into flower and pollen development. Front. Plant Sci. 2015;6:271. DOI 10.3389/fpls.2015. 00271.

125. Sheoran I.S., Sawhney V.K. Proteome analysis of the normal and Ogura (ogu) CMS anthers of Brassica napus to identify proteins associated with male sterility. Botany. 2010;88(3):217-230. DOI 10.1139/B09-085.

126. Song X.Y., Qian H.H., Zhang L.L. Cytogenetic analysis of cytoplasmic male sterility in wheat line KTP116A and molecular mapping of two thermo-sensitive restoration genes. Euphytica. 2014;196(1): 129-136. DOI 10.1007/s10681-013-1020-1.

127. Song Y.S., Schwarzfischer A. Development of STS markers for selection of extreme resistance (Rysto) to PVY and maternal pedigree analysis of extremely resistant cultivars. Am. J. Potato Res. 2008; 85:159-170.

128. Stoeva-Popova P.K., Dimaculangan D., Radkova M., Vulkova Z. Towards cytoplasmic male sterility in cultivated tomato. J. Agric. Food Environ. Sci. 2007;1(1). http://www.scientificjournals.org/journals 2007/articles/1058.htm.

129. Sukhotu T., Kamijima O., Hosaka K. Nuclear and chloroplast DNA differentiation in Andean potatoes. Genome. 2004;47:46-56. DOI 10.1139/g03-105.

130. Sukhotu T., Kamijima O., Hosaka K. Chloroplast DNA variation in the most primitive cultivated diploid potato species Solanum stenotomum Juz. et Buk. and its putative wild ancestral species using high-resolution markers. Genet. Res. Crop Evol. 2006;53:53-63. DOI 10.1007/s10722-004-0573-1.

131. Sun Q., Hu C., Hu J., Li S., Zhu Y. Quantitative proteomic analysis of CMS-related changes in Honglian CMS rice anther. Protein J. 2009; 28(7-8):341-348. DOI 10.1007/s10930-009-9199-7.

132. Suzuki H., Rodriguez-Uribe L., Xu J., Zhang J. Transcriptome analysis of cytoplasmic male sterility and restoration in CMS-D8 cotton. Plant Cell Rep. 2013;32(10):1531-1542. DOI 10.1007/s00299-0131465-1467.

133. Sykes T., Yates S., Nagy I., Asp T., Small I., Studer B. In silico identification of candidate genes for fertility restoration in cytoplasmic male sterile perennial ryegrass (Lolium perenne L.). Genome Biol. Evol. 2016:evw047. DOI 10.1093/gbe/evw047.

134. Tan Y., Li S., Xie H.W., Zhu Y.G. Genetical and molecular analysis reveals a cooperating relationship between cytoplasmic male sterility- and fertility restoration-related genes in Oryza species. Theor. Appl. Genet. 2011;122(1):9-19. DOI 10.1007/s00122-0101418-2.

135. Touzet P., Meyer E.H. Cytoplasmic male sterility and mitochondrial metabolism in plants. Mitochondrion. 2014;19:166-171. DOI 10.1016/j.mito.2014.04.009.

136. Tucci M., Carputo D., Bile G., Frusciante L. Male fertility and freezing tolerance of hybrids involving Solanum tuberosum haploids and diploid Solanum species. Potato Res. 1996;39(3):345-353. DOI 10.1007/BF02357938.

137. Tyrnov V.S., Elkonin L.A. Studying genetic control of cytoplasmic male sterility in plants: state of the problem and current approaches. Genetika = Genetics (Moscow). 2000;36 (4):437-45.

138. Veilleux R. Anther culture of potato and molecular analysis of antherderived plants as laboratory exercises for plant breeding cources. Hortic. Technol. 1999;9:585-588.

139. Wang S., Wang C., Zhang X.-X., Chen X., Liu J.-J., Jia X.-F., Jia S.Q. Transcriptome de novo assembly and analysis of differentially expressed genes related to cytoplasmic male sterility in cabbage. Plant Physiol. Biochem. 2016;5:224-232. DOI 10.3390/ijms17010042.

140. Wang Z., Zou Y., Li X., Zhang Q., Chen L., Wu H., Su D., Chen Y., Guo J., Long Y., Zhong Y., Liu Y. Cytoplasmic male sterility of rice with boro II cytoplasm is caused by cytotoxic peptide and is restored by two related PPR motif genes via distinct modes of mRNA silencing. Plant Cell. 2006;18(3):676-687. DOI 10.1105/tpc.105.038240.

141. Wang Z.W., De Wang C., Mei S.Y., Gao L., Zhou Y., Wang T. An insertion–deletion at a pentatricopeptide repeat locus linked to fertility transition to cytoplasmic male sterility in radish (Raphanus sativus L.). Mol. Breeding. 2015;35:108(4). DOI 10.1007/s11032015-0301-x.

142. Wei L., Fei Z., Wu X., Dong H., Zhou P., Zhang J. Mitochondrial comparative proteomic analysis of sterile line and its maintain line of purple cytoplasmic rice (Oryza sativa). Advances Biosci. Biotechnol. 2010;1:145-151. DOI 10.4236/abb.2010.13020.

143. Wen L., Chase C.D. Pleiotropic effects of a nuclear restorer-of-fertility locus on mitochondrial transcripts in malefertile and S male-sterile maize. Curr. Genet. 1999;35:521-526.

144. Wen L., Liu G., Li S.-Q., Wan C.-X., Tao J., Xu K.-Z., Zhang Z.-J., Zhu Y.-G. Proteomic analysis of anthers from Honglian cytoplasmic male sterility line rice and its corresponding maintainer and hybrid. Bot. Studies. 2007;48(3):293-309.

145. Wesołowski W., Szklarczyk M., Szalonek M., Słowińska J. Analysis of the mitochondrial proteome in cytoplasmic male-sterile and male-fertile beets. J. Proteomics. 2015;119:61-74. DOI 10.1016/j.jprot.2014.12.013.

146. Wise R.P., Gobelman-Werner K., Pei D., Dill C.L., Schnable P.S. Mitochondrial transcript processing and restoration of male fertility in T-cytoplasm maize. J. Hered. 1999;90(3):380-385.

147. Wu J., Gong Y., Cui M., Qi T., Guo L., Zhang J., Xing C. Molecular characterization of cytoplasmic male sterility conditioned by Gossypium harknessii cytoplasm (CMS-D2) in upland cotton. Euphytica. 2011;181:17-29. DOI 10.1007/s10681-011-0357-6.

148. Wu Z., Cheng J., Qin C., Hu Z., Yin C., Hu K. Differential proteomic analysis of anthers between cytoplasmic male sterile and maintainer lines in Capsicum annuum L. Int. J. Mol. Sci. 2013;14(11):2298222996. DOI 10.3390/ijms141122982.

149. Xu X.-B., Liu Z.-X., Zhang D.-F., Liu Y., Song W.-B., Li J.-S., Dai J.R. Isolation and analysis of rice Rf1-orthologus PPR genes cosegregating with Rf3 in maize. Plant Mol. Biol. Rep. 2009;27:511. DOI 10.1007/s11105-009-0105-4.

150. Yan X., Dong C., Yu J., Liu W., Jiang C., Liu J., Hu Q., Fang X., Wei W. Transcriptome profile analysis of young floral buds of fertile and sterile plants from the self-pollinated offspring of the hybrid between novel restorer line NR1 and Nsa CMS line in Brassica napus. BMC Genomics. 2013;14:26. DOI 10.1186/1471-2164-14-26.

151. Yang P., Han J., Huang J. Transcriptome sequencing and de novo analysis of cytoplasmic male sterility and maintenance in JACMS cotton. PLoS ONE. 2014;9(11):e112320. DOI 10.1371/journal.pone.0112320.

152. Yang X., Cheng Y.F., Deng C., Ma Y., Wang Z.W., Chen X.H., Xue L.-B. Comparative transcriptome analysis of eggplant (Solanum melongena L.) and turkey berry (Solanum torvum Sw.): phylogenomics and disease resistance analysis. BMC Genomics. 2014;15:412. DOI 10.1186/1471-2164-15-412.

153. Young E.G., Hanson M.R. A fused mitochondrial gene associated with cytoplasmic male sterility is developmentally regulated. Cell. 1987;50(1):41-49.

154. Yue B., Vick B.A., Cai X., Hu J. Genetic mapping for the Rf1 (fertility restoration) gene in sunflower (Helianthus annuus L.) by SSR and TRAP markers. Plant Breed. 2010;129(1):24-28. DOI 10.1111/j.1439-0523.2009.01661.x.

155. Yurina N.P., Odintsova M.S. Signal transduction pathways of plant mitochondria: retrograde regulation. Fiziologiya rasteniy = Plant Physiology (Moscow). 2010;57(1):9-22.

156. Zhang F., Li G., Ding Q., Wang Z., Ma X., Zhang H., Zhang Z., Jin F., Ma L. Proteome analysis of pollen in the K-type male sterility line 732A and its maintainer 732B in wheat (Triticum aestivum L.) by two-dimensional gel electrophoresis. Acta Physiol. Plant. 2016;38:84. DOI 10.1007/s11738-016-2077-y.

157. Zhang J., Stewart J.M. Inheritance and genetic relationships of the D8 and D2-2 restorer genes for cotton cytoplasmic male sterility. Crop Science. 2001;41(2):289-294. DOI 10.2135/cropsci2001.412289x.

158. Zhang Z., Zheng Y. Identification of candidate genes associated with fertility restoration in maize S cytoplasmic male sterility. Plant Mol. Biol. Rep. 2008;26(1):60-71. DOI:10.1007/s11105-008-0023-x.


Рецензия

Просмотров: 2792


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)