1. Ali A., Alexandersson E., Sandin M., Resjö S., Lenman M., Hedley P., Levander F., Andreasson E. Quantitative proteomics and transcriptomics of potato in response to Phytophthora infestans in compatible and incompatible interactions. BMC Genomics. 2014;15(1):497. https://doi.org/10.1186/1471-2164-15-497.
2. Andersson M., Turesson H., Nicolia A., Falt A., Samuelsson M., Hofvander P. Efficient targeted multiallelic mutagenesis in tetraploid potato (Solanum tuberosum) by transient CRISPR-Cas9 expression in protoplasts. Plant Cell Rep. 2016;36(1):117-128. https://doi.org/10.1007/s00299-016-2062-3.
3. Baebler Š., Witek K., Petek M., Stare K., Tušek-Žnidarič M., PompeNovak M., Renaut J., Szajko K., Strzelczyk-Żyta D., Marczewski W., Morgiewicz K., Gruden K., Hennig J. Salicylic acid is an indispensable component of the Ny-1 resistance-gene-mediated response against Potato virus Y infection in potato. J. Exp. Bot. 2014; 65(4):1095-1109.
4. Bhogale S., Mahajan A.S., Natarajan B., Rajabhoj M., Thulasiram H.V., Banerjee A.K. MicroRNA156: A potential graft-transmissible microRNA that modulates plant architecture and tuberization in Solanum tuberosum ssp. andigena. Plant Physiol. 2014;164(2):10111027. https://doi.org/10.1104/pp.113.230714.
5. Bortesi L., Fischer R. The CRISPR/Cas9 system for plant genome editing and beyond. Biotechnol. Advance. 2015;33(1):41-52. Available at https://doi.org/10.1016/j.biotechadv.2014.12.006.
6. Burra D.D., Berkowitz O., Hedley P.E., MorrisJ., Resjö S., Levander F., Liljeroth E., Andreasson E., Alexandersson E. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol. 2014;14:254. https://doi.org/10.1186/s12870-014-0254-y.
7. Butler N.M., Atkins P.A., Voytas D.F., Douches D.S. Generation and inheritance of targeted mutations in potato (Solanum tuberosum L.) using the CRISPR/Cas System. PLoS ONE. 2015;10(12). https://doi.org/10.1371/journal.pone.0144591.
8. Butler N.M., Douches D.S. Sequence-specific nucleases for genetic improvement of potato. Am. J. Potato Res. 2016;93(4):303-320. https://doi.org/10.1007/s12230-016-9513-9.
9. Carvallo M.A., Pino M.T., Jeknić Z., Zou C., Doherty C.J., Shiu S.H., Chen T.H.H., Thomashow M.F. A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J. Exp. Bot. 2011;62(11):3807-3819.
10. Chi M., Liu C., Su Y., Tong Y., Liu H. Bioinformatic prediction of upstream microRNAs of PPO and novel microRNAs in potato. Can. J. Plant Sci. 2015;95(5):871-877. https://doi.org/10.1139/CJPS-2014-308.
11. Clough E., Barrett T. The Gene Expression Omnibus database. Methods Mol. Biology. 2016;1418:93-110. https://doi.org/10.1007/978-1-49393578-9_5.
12. Evers D., Legay S., Lamoureux D., Hausman J.F., Hoffmann L., Renaut J. Towards a synthetic view of potato cold and salt stress response by transcriptomic and proteomic analyses. Plant. Mol. Biol. 2012;78(4-5):503-14. https://doi.org/10.1007/s11103-012-9879-0.
13. Felcher K.J., Coombs J.J., Massa A.N., Hansey C.N., Hamilton J.P., Veilleux R.E., Buell C.R., Douches D.S. Integration of two diploid potato linkage maps with the Potato Genome Sequence. PLoS ONE. 2012;7(4). https://doi.org/10.1371/journal.pone.0036347.
14. Frades I., Abreha K.B., Proux-Wéra E., Lankinen Å., Andreasson E., Alexandersson E. A novel workflow correlating RNA-seq data to Phythophthora infestans resistance levels in wild Solanum species and potato clones. Front. Plant Sci. 2015;6:718. https://doi.org/10.3389/fpls.2015.00718.
15. Gálvez J.H., Tai H.H., Lagüe M., Zebarth B.J., Strömvik M.V. The nitrogen responsive transcriptome in potato (Solanum tuberosum L.) reveals significant gene regulatory motifs. Sci. Reports. 2016;6:26090. https://doi.org/10.1038/srep26090.
16. Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Cell. 2013;29(4):248-256. https://doi.org/10.1016/j.tig.2012.11.006.
17. Gong L., Zhang H., Gan X., Zhang L., Chen Y., Nie F., Shi L., Li M., Guo Z., Zhang G., Song Y. Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS ONE. 2015;10(5):e0128041. https://doi.org/10.1371/journal.pone.0128041.
18. Hamilton J.P., Hansey C.N., Whitty B.R., Stoffel K., Massa A.N., Deynze A., De Jong W., David S., Douches D.S., Buell C.R. Single nucleotide polymorphism discovery in elite north american potato germplasm. BMC Genomics. 2011;12:302. https://doi.org/10.1186/14712164-12-302.
19. Hirsch C.D., Hamilton J.P., Childs K.L., Cepela J., Crisovan E., Vaillancourt B., Hirsch C.N., Habermann M., Neal B., Buell C.R. Spud DB: A resource for mining sequences, genotypes, and phenotypes to accelerate potato breeding. Plant Genome. 2014;7(1). https://doi.org/10.3835/plantgenome2013.12.0042.
20. Hougas R.W., Peloquin S.J., Ross R.W. Haploids of the common potato. J. Heredity. 1958;49:103-106.
21. Jupe F., Pritchard L., Etherington G.J., MacKenzie K., Cock P.J.A., Wright F., Sharma S.K., Bolser D., Bryan G.J., Jones J.D.G., Hein I. Identification and localization of the NB-LRR gene family within the potato genome. BMC Genomics. 2012;13:75. https://doi.org/10.1186/14712164-13-75.
22. Khlestkin V.K., Peltek S.E., Kolchanov N.A. Target genes for development of potato (Solanum tuberosum L.) cultivars with desired starch properties. Sel’skokhozyaistvennaya biologiya=Agricultural Biology. 2017;52(1):25-36. https://doi.org/10.15389/agrobiology.2017.1.25. (in Russian).
23. Khlestkina E.K. Genomnoe redaktirovanie kak mashina vremeni, ili domestikatsiya za paru let. Nauka iz pervykh ruk [Genome editing as ‘time machine’ or domestication within a couple of years. Science First Hand]. 2016;71-72(5-6):72-75. (in Russian).
24. Khlestkina E.K., Shumny V.K. Prospects for application of breakthrough technologies in breeding: The CRISPR/Cas9 system for plant genome editing. Genetika = Genetics. 2016;52(7):774-787. (in Russian).
25. Khlestkina E.K., Shumny V.K., Kolchanov N.A. Marker-assisted selection and examples of its application in world potato growing. Dostizheniya nauki i tehniki APK = Achievements of Science and Technology of AIC. 2016;30(10):5-8. (in Russian).
26. Kolchanov N.A., Kochetov A.V., Salina E.A., Pershina L.A., Khlestkina E.K., Shumny V.K. The state and trends of marker-assisted and genomic selection application in plants. Vestnik Rossiiskoi Akademii Nauk = Herald of the Russian Academy of Sciences. 2017;87:40-46. (in Russian).
27. Kolesnikov N., Hastings E., Keays M., Melnichuk O., Tang Y.A., Williams E., Dylag M., Kurbatova N., Brandizi M., Burdett T., Megy K., Pilicheva E., Rustici G., Tikhonov A., Parkinson H., Petryszak R., Sarkans U., Brazma A. ArrayExpress update-simplifying data submissions. Nucl. Acids Res. 2015;43(D1):D1113-D1116. https://doi.org/10.1093/nar/gku1057.
28. Kozomara A., Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucl. Acids Res. 2013;42(D1):D68-D73. https://doi.org/10.1093/nar/gkt1181.
29. Lakhotia N., Joshi G., Bhardwaj A.R., Bhardwaj A.R., Katiyar-Agarwal S., Agarwal M., Jagannath A., Goel S., Kumar A. Identification and characterization of miRNAome in root, stem, leaf and tuber developmental stages of potato (Solanum tuberosum L.) by high-throughput sequencing. BMC Plant Biology. 2014;14:6. https://doi.org/10.1186/1471-2229-14-6.
30. Limantseva L., Mironenko N., Shuvalov O., Antonova O., Khiutti A., Novikova L., Afanasenko O., Spooner D., Gavrilenko T. Characterization of resistance to Globodera rostochiensis pathotype Ro1 in cultivated and wild potato species accessions. Plant Breeding. 2014; 133:660-665. https://doi.org/10.1111/pbr.12195.
31. Liu Y., Lin-Wang K., Deng C., Warran B., Wang L., Yu B., Yang H., Wang J., Espley R.V., Zhang J., Wang D., Allan A.C. Comparative transcriptome analysis of white and purple potato to identify genes involved in anthocyanin biosynthesis. PLoS ONE. 2015;10(6): e0129148. https://doi.org/10.1371/journal.pone.0129148.
32. Martin A., Adam H., Díaz-Mendoza M., Zurczak M., GonzálezSchain N.D., Suárez-López P. Graft-transmissible induction of potato tuberization by the microRNA miR172. Development. 2009; 136(17):2873-2881. https://doi.org/10.1242/dev.031658.
33. Massa A.N., Childs K.L., Lin H., Bryan G.J., Giuliano G., Buell C.R. The transcriptome of the reference potato genome Solanum tuberosum group phureja clone DM1-3 516R44. PLoS ONE. 2011;6(10): e26801. https://doi.org/10.1371/journal.pone.0026801.
34. Nowicki M., Foolad M.R., Nowakowska M., Kozik E.U. Potato and tomato late blight caused by Phytophthora infestans: An overview of pathology and resistance breeding. Plant Disease. 2012;96(1):4-17. Available at https://doi.org/10.1094/PDIS-05-11-0458.
35. Petek M., Rotter A., Kogovšek P., Baebler Š., Mithöfer A., Gruden K. Potato virus Y infection hinders potato defence response and renders plants more vulnerable to Colorado potato beetle attack. Mol. Ecol. 2014;23(21):5378-5391. https://doi.org/10.1111/mec.12932.
36. Ramakrishnan A.P., Ritland C.E., Blas Sevillano R.H., Riseman A. Review of potato molecular markers to enhance trait selection. Am. J. Potato Res. 2015;92(4):455-472. https://doi.org/10.1007/s12230-015-9455-7.
37. Rensink W.A., Lee Y., Liu J., Iobst S., Ouyang S., Buell C.R. Comparative analyses of six solanaceous transcriptomes reveal a high degree of sequence conservation and species-specific transcripts. BMC Genomics. 2005;6:124. https://doi.org/10.1186/1471-2164-6-124.
38. Rickert A.M., Kim J.H., Meyer S., Nagel A., Ballvora A., Oefner P.J., Gebhardt C. First generation SNP/InDel markers tagging loci for pathogen resistance in the potato genome. Plant Biotechnol. 2003;1: 399-410. https://doi.org/10.1046/j.1467-7652.2003.00036.x.
39. Rogozina E.V., Khavkin E.E., Sokolova E.A., Kuznetsova M.A., Gavrilenko T.A., Limantseva L.A., Biryukova V.A., Chalaja N.A., Jones R.W., Deahl K.L. Clone collection of wild species and interspecific hybrids of potato studied phytopathologically and by means of DNA markers. Trudy po prikladnoĭ botanike, genetike i selektsii=Proceedings on Applied Botany, Genetics and Breeding. 2013;174:23-32. (in Russian).
40. Rogozina E.V., Shuvalov O.Yu., Antonova O.Yu., Gavrilenko T.A. Interspecific and intraspecific diversity on resistance to Y virus in potato. Sel’skokhozyaistvennaya biologiya = Agricultural Biology, 2012;5:64-69. https://doi.org/10.15389/agrobiology.2012.5.64. (in Russian).
41. Rosyara U.R., De Jong W.S., Douches D.S., Endelman J.B. Software for genome-wide association studies in autopolyploids and its application to potato. Plant Genome. 2016;9(2). https://doi.org/10.3835/plantgenome2015.08.0073.
42. Simko I., Haynes K.G., Jones R.W. Assessment of linkage disequilibrium in potato genome with single nucleotide polymorphism markers. Genetics. 2006;173(4):2237-2245. https://doi.org/10.1534/genetics.106.060905.
43. Slater A.T., Cogan N.O.I., Forster J.W. Cost analysis of the application of marker-assisted selection in potato breeding. Mol. Breeding. 2013;32(2):299-310. https://doi.org/10.1007/s11032-013-9871-7.
44. Slater A.T., Cogan N.O.I., Forster J.W., Hayes B.J., Daetwyler H.D. Improving genetic gain with genomic selection in autotetraploid potato. Plant Genome. 2016;9(3). https://doi.org/10.3835/plantgenome2016.02.0021.
45. SolCAP 2016. Available at http://solcap.msu.edu/potato_infinium.shtml. Доступ 08.10.2016.
46. Stare T., Ramšak Ž., Blejec A., Stare K., Turnšek N., Weckwerth W., Wienkoop S., Vodnik D., Gruden K. Bimodal dynamics of primary metabolism-related responses in tolerant potato-Potato virus Y interaction. BMC Genomics. 2015;16(1):716. https://doi.org/10.1186/s12864015-1925-2.
47. Szcześniak M.W., Makałowska I. miRNEST 2.0: a database of plant and animal microRNAs. Nucl. Acids Res. 2014;42:D74-D77. https://doi.org/10.1093/nar/gkt1156.
48. The Potato Genome Sequencing Consortium. Genome sequence and analysis of the tuber crop potato. Nature. 2011;475:189-195. https://doi.org/10.1038/nature10158.
49. The RNAcentral Consortium. RNAcentral: a comprehensive database of non-coding RNA sequences. Nucl. Acids Res. 2017;45(D1):D128D134. https://doi.org/10.1093/nar/gkw1008.
50. Uitdewilligen J.G.A.M.L., Wolters A.-M.A., D’hoop B.B., Borm T.J.A., Visser R.G.F., van Eck H.J. A next-generation sequencing method for genotyping-by-sequencing of highly heterozygous autotetraploid potato. PLoS ONE. 2013;8(5):e62355. https://doi.org/10.1371/journal.pone.0062355.
51. Van Os H., Andrzejewski S., Bakker E., Barrena I., Bryan G.J., Caromel B., Ghareeb B., Isidore E., de Jong W., van Koert P., Lefebvre V., Milbourne D., Ritter E., Rouppe van der Voort J.N.A.M., Rousselle-Bourgeois F., van Vliet J., Waugh R., Visser R.G.F., Bakker J., van Eck H.J. Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genomewide physical map. Genetics. 2006;173:1075-1087. https://doi.org/10.1534/genetics.106.055871.
52. Veilleux R.E., Booze-Daniels J., Pehu E. Anther culture of a 2n pollen producing clone of Solanum phureja Juz. & Buk. Can. J. Genet. Cytology. 1985;27:559-564.
53. Visser R.G.F., Bachem C.W.B., de Boer J.M., Bryan G.J., Chakrabati S.K., Feingold S., Gromadka R., van Ham R.C.H.J., Huang S., Jacobs J.M.E., Kuznetsov B., de Melo P.E., Milbourne D., Orjeda G., Sagredo B., Tang X. Sequencing the potato genome: outline and first results to come from the elucidation of the sequence of the world’s third most important food crop. Am. J. Potato Res. 2009;86:417429. https://doi.org/10.1007/s12230-009-9097-8.
54. Wang S., Zhang S., Wang W., Xiong X., Meng F., Cui X. Efficient targeted mutagenesis in potato by the CRISPR/Cas9 system. Plant Cell Rep. 2015;34(9):1473-1476. https://doi.org/10.1007/s00299-015-1816-7.
55. Zhang N., Yang J., Wang Z., Wen Y., Wang J., He W., Liu B., Si H., Wang D. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PLoS ONE. 2014; 9(4):e95489. https://doi.org/10.1371/journal.pone.0095489.
56. Zhang R., Marshall D., Bryan G.J., Hornyik C. Identification and characterization of miRNA transcriptome in potato by high-throughput sequencing. PLoS ONE. 2013;8(2):e57233. https://doi.org/10.1371/journal.pone.0057233.
57. Zhang W., Luo Y., Gong X., Zeng W., Li S. Computational identification of 48 potato microRNAs and their targets. Comput. Biol. Chem. 2009;33(1):84-93. Available at https://doi.org/10.1016/j.compbiolchem.2008.07.006.
58. Zuluaga P.A., Solé M., Lu H., Góngora-Castillo E., Vaillancourt B., Coll N., Buell C.R., Valls M. Transcriptome responses to Ralstonia solanacearum infection in the roots of the wild potato Solanum commersonii. BMC Genomics. 2015;16(1):246. https://doi.org/10.1186/s12864015-1460-1.