Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Polymorphism of RAPD and ISSR markers in grain amaranth species

https://doi.org/10.18699/VJ17.236

Abstract

Different molecular genetic markers are effectively used in agricultural genetic selection programs. Genetic markers can be used in commercial breeds certification performance, fast and reliable genotype identification, genetic maps creation, genetics, phylogeny and plant systematic studies, which can accelerate selection, provide effective study and culture genofond maintenance. Amaranth, in this regard, has not been studied well, there is not enough data to effectively perform amaranth marker selection or for the certification of new and existing varieties; there are inaccuracies in the systematization of the crop. Important are the questions about the origin of grain amaranth species and the processes of their evolutionary formation. Amaranth is a pseudo-cereal with a millennia-long history, it has been actively cultivated in many countries around the world in recent decades. A high level of alterability and the formation of a huge number of spontaneous hybrids in natural populations of amaranth significantly complicate the identification of individual genotypes and entire taxonomic units of Amaranthus L. Due to the lack of research and depending on the environmental conditions, the morphological markers of amaranth are not able to provide sufficient genomic information to the breeder; thus it is necessary to search for reliable genetic markers that allow the genetic diversity of the Amaranthus L. species to be studied and effectively maintained. This research includes grain amaranth species DNA polymorphism analysis. Using RAPD and ISSR technologies, 203 loci have been identified, of which 173 appear to be polymorphic, 30 monomorphic (found in all genotypes analyzed) and 13 unique (found only in one genotype). Unique and monomorphic DNA loci can be used as specific genetic markers, in particular, for the certification of breeds, which is especially important for the identification of plant material and plant genetic variability monitoring. A high level of DNA polymorphism was revealed (about 85 %), a genetic relationship between grain amaranth species established, their monophyletic origin theory verified. A. mantegazzianus Passer. was proved to be an A. caudatus L. subspecies.

About the Authors

S. V. Lymanska
V.V. Dokuchaev Kharkiv National Agrarian University
Ukraine
Kharkiv


L. A. Miroshnichenko
Voronezh State University of Engineering Technologies
Russian Federation
Voronezh


T. I. Goptsiy
V.V. Dokuchaev Kharkiv National Agrarian University
Ukraine
Kharkiv


O. S. Korneeva
Voronezh State University of Engineering Technologies
Russian Federation
Voronezh


References

1. Alekseeva E.I., Vlasova A.B., Yukhimuk A.N. Physicochemical characterization of amaranth varieties and their genetic differentiation. Trudy BGU = Proceedings of the Belarusian State University. 2010;5(2):127-133. (in Russian)

2. Chan K.F. Phylogenic relationships and genetic diversity detected by RAPD and isozyme analysis of crop and weedy species of amaranthus. M. Phil. Thesis. 1997. Available at http://hdl.handle.net/10722/32162.

3. Costea M., DeMason D. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) – taxonomic significance. J. Torr. Bot. Soc. 2001;128:254-281.

4. Faseela K.V., Salikutty J. Molecular characterization of amaranthus landraces and assessment of interspecific relationships among Amaranthus spp. (L.) using RAPD markers. Indian J. Genet. 2007;67:12-17.

5. Fatinah A.A., Arumingtyas E.L., Mastuti R. Genetic diversity study among six genera of Amaranth Family found in Malang based on RAPD marker. J. Tropical Life Sci. 2012;2(3):81-86.

6. Goptsiy T.I. Amarant: biologija, vyroshhuvannja, perspektyvy vykorystannja, selekcija [Amaranth: biology, cultivation, prospects of use, and breeding]. Kharkiv, 1999. (in Ukrainian)

7. Labajova M., Senkova S., Ziarovska J., Razna K., Bezo M., Stefunova V., Zelenakova L. The Potential of ISSR markers in Amaranth gamma-radiance mutants genotypying. J. Microbiol. Biotechnol. Food Sci. 2011;1(4):507-521.

8. Mallory M.A., Hall R.V., McNabb A.R., Pratt D.B., Jellen E.N., Maughan P.J. Development and characterization of microsatellite markers for the grain amaranths. Crop Sci. 2008;48:1098-1106.

9. Mandal N., Das P.K. Intra- and iterspecific genetic diversity in grain amaranthus using random amplified polymorphic DNA markers. Plant Tissue Cult. 2002;12:49-56.

10. Matveeva T.V., Pavlova O.A., Bogomaz D.I., Lutova L.A., Demkovich A.E. Molecular markers for plant species identification and phylogenetics. Ekologicheskaya genetika = Ecological Genetics. 2011;IX(1):32-43. (in Russian)

11. Maughan P.J., Smith S.M., Fairbanks D.J., Jellen E.N. Development, characterization, and linkage mapping of single nucleotide polymorphisms in the grain amaranths (Amaranthus sp.). Plant Gen. 2011;4:92-10.

12. Mujica A., Jacobsen S.E. The genetic resources of Andean grain amaranth (Amaranthus caudatus L., A. cruentus L. and A. hypochondriacus L.) in America. Plant Genet. Res. Newslett. 2011;133:41-44.

13. Murray M.G., Thompson W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321-4325.

14. Nei M., Li W.-H. Mathematical model for studying genetic variation in terms of restriction endonucleases. PNAS USA. 1979;76:52695273.

15. Park Y.-J., Nishikawa T. Rapid identification of Amaranthus caudatus and Amaranthus hypochondriacus by sequencing and PCR–RFLP analysis of two starch synthase genes. Genome. 2012;55:622-628.

16. Park Y.-J., Nishikawa T., Matsushima K., Minami M., Nemoto K. A rapid and reliable PCR-restriction fragment length polymorphism (RFLP) marker for the identification of Amaranthus cruentus species. Breed. Sci. 2014;64:422-426. DOI 10.1270/jsbbs. 64.422.

17. Ranade S.A., Kumar A., Goswamt M., Farooqui N., Sane P.V. Genome analysis of Amaranth: determination of inter- and intra-species variation. J. Biosci. 1997;22(4):457-464.

18. Ray T., Roy S.C. Physical localization of highly nutritional protein coding AmA1 gene in amaranths through molecular cytogenetic tools. Caryologia. 2008;61(3):216-224.

19. Ray T., Roy S.C. Genetic diversity of Amaranthus species from the IndoGangetik plains revealed by RAPD analysis leading to the development of ecotype-specific SCAR marker. J. Hered. 2009;100(3):338-347.

20. Razna K., Ziarovska J., Labajova M. Genome changes in mutant lines of Amaranthus as detected by microsatellite-directed PCR. J. Agricult. Biol. Sci. 2012;7(11):877-884.

21. Riggins C.W., Peng Y., Stewart C.N. Jr, Tranela P.J. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Soc. Chem. Industr. 2010;66:1042-1052.

22. Sauer J.D. Grain amaranth. Ewolution of crop plants. London: Simmonds NW, Longman Group Ltd, 1976;4-7.

23. Sivolap Y.M. Ispol’zovanie PTsR-analiza v genetiko-selektsionnykh issledovaniyakh: Nauchno-metodicheskoe rukovodstvo [Guidelines for using PCR analysis in genetics and breeding]. Kyiv, Agrarna nauka Publ., 1998. (in Russian)

24. Stefunova I.V. Geneticka analyza laskavca (Amaranthus L.) DNA markermi: Autoref. diz. Nitra. 2008.

25. Stefunova V., Bezo M., Ziarovska J., Razna K. Detection of the genetic variability of Amaranthus by RAPD and ISSR markers. Pak. J. Bot. 2015;47(4):1293-1301.

26. Xu F., Sun M. Comparative analysis of phylogenetic relationships of grain amaranths and their wild relatives (Amaranthus; Amaranthaceae) using internal transcribed spacer, amplified fragment length polymorphism, and double-primer fluorescent intersimple sequence repeat markers. Mol. Phylogen. Evol. 2001;21(3):372-387.

27. Zheleznov A.V., Zheleznova N.B., Burmakina N.V., Yudina R.S. Amarant: nauchnye osnovy introduktsii [Amaranth: scientific foundations of introduction]. Novosibirsk: Geo Publ., 2009. (in Russian)


Review

Views: 1933


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)