Синапсис и рекомбинация аутосом и половых хромосом у двух видов крачек (Sternidae, Charadriiformes, Aves)


https://doi.org/10.18699/VJ17.245

Полный текст:


Аннотация

Интенсивность мейотической рекомбинации и закономерности распределения точек кроссинговера вдоль хромосом значительно варьируют между видами животных, в том числе близкородственными. Предложено несколько гипотез об адаптивном значении этих различий и их эволюции. Высказаны предположения о том, что рекомбинационные характеристики видов обусловлены филогенетической историей видов и их экологией. Однако большая часть исходных данных получена на млекопитающих, у которых характеристики рекомбинации находятся под влиянием значительной кариологической изменчивости. В этой связи изучение характеристик рекомбинации у таксонов с более стабильными кариотипами, таких как рептилии и птицы, представляется актуальным. В данной работе использовали метод флуоресцентной иммунолокализации белка бокового элемента синаптонемного комплекса (SYCP3), белков центромеры и белка мисматч-репарации MLH1, маркирующего сайты кроссинговера, на препаратах распластанных профазных ооцитов для изучения особенностей синапсиса и рекомбинации у двух видов птиц – черной крачки (Chlidonias niger) и речной крачки (Sterna hirundo). Мы впервые охарактеризовали кариотип Ch. niger (2n = 74, FN = 94), уточнили описание кариотипа S. hirundo (2n = 68, FN = 90) и идентифициро- вали предположительные перестройки, отличающие кариотипы данных видов друг от друга. Обнаружено, что черная и речная крачки достоверно отличаются по среднему числу кроссоверов на клетку (53.0±4.2 у черной и 44.1±5.0 у речной крачек) и по распределению кроссоверов на гомологичных хромосомах. Показано, что различия по числу кроссоверов обусловлены различиями в длине синаптонемных комплексов – суммарной длине аутосомных комплексов и длине индивидуальных бивалентов. Было установлено, что на число обменов и различия в их распределении влияют хромосомные перестройки: различие рекомбинационных характеристик между перестроенными гомеологами было выше, чем между неперестроенными. Мы описали особенности синапсиса гетероморфных Z- и W-хромосом, локализовали псевдоаутосомный район и оценили его физический размер. Выяснено, что несмотря на перестройки аутосом, отличающие друг от друга указанные виды, строение и синаптические характеристики половых хромосом не изменились за 9 млн лет, прошедших со времени дивергенции родов Sterna и Chlidonias.

Об авторах

А. П. Лисачев
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия
Новосибирск


Л. П. Малиновская
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»; Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия
Новосибирск


А. В. Друзяка
Федеральное государственное бюджетное учреждение науки «Институт систематики и экологии животных Сибирского отделения Российской академии наук»
Россия
Новосибирск


П. М. Бородин
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»; Федеральное государственное автономное образовательное учреждение высшего образования «Новосибирский национальный исследовательский государственный университет»
Россия
Новосибирск


А. А. Торгашева
Федеральное государственное бюджетное научное учреждение «Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук»
Россия
Новосибирск


Список литературы

1. Anderson L.K., Reeves A., Webb L.M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151:15691579.

2. Barton N.H., Otto S.P. Evolution of recombination due to random drift. Genetics. 2005;169(4):2353-2370.

3. Borodin P.M., Basheva E.A., Torgasheva A.A., Dashkevich O.A., Golenishchev F.N., Kartavtseva I.V., Mekada K., Dumont B.L. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res. 2012;20:259-268.

4. Bridge E.S., Jones A.W., Baker A.J. A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol. Phylogenet. Evol. 2005; 35(2):459-469.

5. Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96(1-4):97-112.

6. Calderon P.L., Pigozzi M.I. MLH1-focus mapping in birds shows equal recombination between sexes and diversity of crossover patterns. Chromosome Res. 2006;14(6):605-612.

7. del Priore L., Pigozzi M.I. Meiotic recombination analysis in female ducks (Anas platyrhynchos). Genetica. 2016;144(3):307-312.

8. Dumont B.L. Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics. 2017;205(1):155-168.

9. Ellegren H. Genomic evidence for a large-Z effect. Proc. Biol. Sci. 2009;276(1655):361-366.

10. Ellegren H. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol. Evol. 2010;25(5):283-291.

11. Eyre-Walker A., Hurst L.D. The evolution of isochores. Nat. Rev. Genet. 2001;2(7):549-555.

12. Gilbert A.T., Servello F.A. Insectivory versus piscivory in Black Terns: implications for food provisioning and growth of chicks. Waterbirds. 2005;28(4):436-444.

13. Gorlov I.P., Ladygina T.Y., Serov O.L., Borodin P.M. Positional control of chiasma distribution in the house mouse. Chiasma distribution in mice homozygous and heterozygous for an inversion in chromosome 1. Heredity. 1991;66:453-458.

14. Graves J.A.M. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 2014;22(1):45-57.

15. Gregory T.R. Animal Genome Size Database. http://www.genomesize.com [2 декабря 2016].

16. Griffin D.K., Burt D.W. All chromosomes great and small: 10 years on. Chromosome Res. 2014;22(1):1-6.

17. Griffin D.K., Robertson L.B.W., Tempest H.G., Skinner B.M. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet. Genome Res. 2007;117(1-4):64-77.

18. Hammar B.O. The karyotypes of thirty-one birds. Hereditas. 1970; 65(1):29-58.

19. Kleckner N., Zickler D., Jones G.H., Dekker J., Padmore R., Henle J., Hutchinson J. A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. USA. 2004;101(34):12592-12597.

20. Kolomiets O.L., Vorontsov N.N., Lyapunova E.A., Mazurova T.F. Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica. 1991;84(3):179-189.

21. Lynn A., Koehler K.E., Judis L., Chan E.R., Cherry J.P., Schwartz S., Seftel A., Hunt P.A., Hassold T.J. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science. 2002; 296(5576):2222-2225.

22. Mary N., Barasc H., Ferchaud S., Billon Y., Meslier F., Robelin D., Calgaro A., Loustau-Dudez A.-M., Bonnet N., Yerle M., Acloque H., Ducos A., Pinton A. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PloS ONE. 2014;9(6):e99123.

23. Matveevsky S., Bakloushinskaya I., Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016;6:29949.

24. McKee B.D., Handel M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma. 1993;102(2):71-80.

25. Nanda I., Schlegelmilch K., Haaf T., Schartl M., Schmid M. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 2008;122(2):150-156.

26. Nanda I., Shan Z., Schartl M., Burt D.W., Koehler M., Nothwang H.G., Grützner F., Paton I.R., Windsor D., Dunn I., Engel W., Staeheli P., Mizuno S., Haaf T., Schmid M. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat. Genet. 1999;21(3):258-259.

27. Nie W., O’Brien P.C., Fu B., Wang J., Su W., He K., Bed’Hom B., Volobuev V., Feguson-Smith M.A., Dobigny G., Yang F. Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes. BMC Evol. Biol. 2015;15(1):205.

28. Olsen K.M., Larsson H. Terns of Europe and North America. L.: Christopher Helm Publishers, 1995.

29. Otto S.P., Michalakis Y. The evolution of recombination in changing environments. Trends Ecol. Evol. 1998;13(4):145-151.

30. Pala I., Naurin S., Stervander M., Hasselquist D., Bensch S., Hansson B. Evidence of a neo-sex chromosome in birds. Heredity. 2012; 108(I. 3):264-272.

31. Pardo-Manuel de Villena F., Sapienza C. Recombination is proportional to the number of chromosome arms in mammals. Mamm. Genome. 2001;12(4):318-322.

32. Peters A.H., Plug A.W., van Vugt M.J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66-71.

33. Peterson D.G., Stack S.M., Healy J.L., Donohoe B.S., Anderson L.K. The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res. 1994;2(2):153-162.

34. Pigozzi M.I. Distribution of MLH1 foci on the synaptonemal complexes of chicken oocytes. Cytogenet. Genome Res. 2001;95(3-4): 129-133.

35. Pigozzi M.I. Diverse stages of sex-chromosome differentiation in tinamid birds: evidence from crossover analysis in Eudromia elegans and Crypturellus tataupa. Genetica. 2011;139(6):771-777.

36. Pigozzi M.I., Solari A.J. Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res. 1997;5(6):421-428.

37. Pigozzi M.I., Solari A.J. The ZW pairs of two paleognath birds from two orders show transitional stages of sex chromosome differentiation. Chromosome Res. 1999;7(7):541-551.

38. Pigozzi M.I., Solari A.J. Meiotic recombination in the ZW pair of a tinamid bird shows a differential pattern compared with neognaths. Genome. 2005;48(2):286-290.

39. Reeves A. MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44(3):439-443.

40. Romanov M.N., Farré M., Lithgow P.E., Fowler K.E., Skinner B.M., O’Connor R., Fonseka G., Backström N., Matsuda Y., Nishida C., Houde P., Jarvis E.D., Ellegren H., Burt D.W., Larkin D.M., GriffinD.K. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics. 2014;15(1):1060.

41. Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., Oliver-Bonet M., Fernández-Bellón H., Garcia F., Garcia-Caldés M., Robinson T.J., Ruiz-Herrera A. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 2013; 280(1771):20131945.

42. Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7(4):289-295.

43. Solari A.J. Equalization of Z and W axes in chicken and quail oocytes. Cytogenet. Genome Res. 1992;599(1):52-56.

44. Solari A.J., Pigozzi M.I. Recombination nodules and axial equalization in the ZW pairs of the Peking duck and the Guinea fowl. Cytogenet. Genome Res. 1993;64(3-4):268-272.

45. Szczys P., Lamothe K.A., Druzyaka A., Poot M.J., Siokhin V., van der Winden J. Range-wide patterns of population differentiation of Eurasian Black Terns (Chlidonias niger niger) related to use of discrete post-nuptial staging sites. J. Ornithol. 2016;1-14.

46. Szczys P., Nisbet I.C.T., Wingate D.B. Conservation genetics of the Common Tern (Sterna hirundo) in the North Atlantic region; implications for the critically endangered population at Bermuda. Conserv. Genet. 2012;13(4):1039-1043.

47. Torgasheva A.A., Borodin P.M. Immunocytological analysis of meiotic recombination in the gray goose (Anser anser). Cytogenet. Genome Res. 2017. DOI 10.1159/000458741.

48. Turner J.M.A. Meiotic sex chromosome inactivation. Development. 2007;134:1823-1831.

49. Youds J.L., Boulton S.J. The choice in meiosis – defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 2011;124(4):501-513.

50. Zhou Q., Wang J., Huang L., Nie W., Wang J., Liu Y., Zhao X., Yang F., Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 2008;9:R98.

51. Zhou Q., Zhang J., Bachtrog D., An N., Huang Q., Jarvis E.D., Gilbert M.T.P., Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346(6215):1246338.

52. Zickler D., Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspect. Biol. 2015; 7(6):a016626.


Дополнительные файлы

Просмотров: 1341

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)