Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Synapsis and recombination of autosomes and sex chromosomes in two terns (Sternidae, Charadriiformes, Aves)

https://doi.org/10.18699/VJ17.245

Abstract

The frequency of recombination and the patterns of crossover site distribution along the chromosomes vary considerably among animal species, including closely related species. Several hypotheses concerning the adaptive value and evolution of these variations were proposed. It was supposed that the recombination patterns of the species’ genomes are influenced by their phylogenetic history and ecology. However, most original data were obtained from mammals. The mammals show high karyological variability, which strongly influences the recombination patterns. Therefore it is important to study recombination rate and distribution in more karyologically stable taxa, such as reptiles and birds. We used immunolocalization of SYCP3, the protein of the lateral element of the synaptonemal complex (SC), centromere proteins and the mismatch-repair protein MLH1, which is associated with the recombination nodules, at the synaptonemal complex spreads of prophase oocytes of two tern species, black tern (Chlidonias niger) and common tern (Sterna hirundo). We first described the karyotype of Ch. niger (2n = 74, FN= 94) and identified suggestive rearrangements by which its karyotype differs from that of S. hirundo (2n = 68, FN = 90). We found that these species significantly differed by the numbers of the MLH1 foci per cell (Ch. niger: 53.0±4.2; S. hirundo: 44.1±5.0). We showed that the difference in the crossover numbers per cell was determined by the difference in the SC length (total and of individual bivalents) and by chromosomal rearrangements, which also influenced the distributions of crossover sites along the chromosomes. The difference in recombination patterns was higher between the rearranged homeologues than between the non-rearranged ones. We investigated the synaptic patterns of the heteromor phic Z and W chromosomes, localized the pseudoautosomal regions and estimated their lengths. In spite of several autosomal rearrangements, which differentiate these species, the structure and synaptic patterns of the sex chromosomes have not changed over 9 MY, which have passed since the moment of divergence between the genera Sterna and Chlidonias.

About the Authors

A. P. Lisachov
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


L. P. Malinovskaya
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


A. V. Druzyaka
Institute of Animal Systematics and Ecology SB RAS
Russian Federation
Novosibirsk


P. M. Borodin
Institute of Cytology and Genetics SB RAS; Novosibirsk State University
Russian Federation
Novosibirsk


A. A. Torgasheva
Institute of Cytology and Genetics SB RAS
Russian Federation
Novosibirsk


References

1. Anderson L.K., Reeves A., Webb L.M., Ashley T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics. 1999;151:15691579.

2. Barton N.H., Otto S.P. Evolution of recombination due to random drift. Genetics. 2005;169(4):2353-2370.

3. Borodin P.M., Basheva E.A., Torgasheva A.A., Dashkevich O.A., Golenishchev F.N., Kartavtseva I.V., Mekada K., Dumont B.L. Multiple independent evolutionary losses of XY pairing at meiosis in the grey voles. Chromosome Res. 2012;20:259-268.

4. Bridge E.S., Jones A.W., Baker A.J. A phylogenetic framework for the terns (Sternini) inferred from mtDNA sequences: implications for taxonomy and plumage evolution. Mol. Phylogenet. Evol. 2005; 35(2):459-469.

5. Burt D.W. Origin and evolution of avian microchromosomes. Cytogenet. Genome Res. 2002;96(1-4):97-112.

6. Calderon P.L., Pigozzi M.I. MLH1-focus mapping in birds shows equal recombination between sexes and diversity of crossover patterns. Chromosome Res. 2006;14(6):605-612.

7. del Priore L., Pigozzi M.I. Meiotic recombination analysis in female ducks (Anas platyrhynchos). Genetica. 2016;144(3):307-312.

8. Dumont B.L. Variation and evolution of the meiotic requirement for crossing over in mammals. Genetics. 2017;205(1):155-168.

9. Ellegren H. Genomic evidence for a large-Z effect. Proc. Biol. Sci. 2009;276(1655):361-366.

10. Ellegren H. Evolutionary stasis: the stable chromosomes of birds. Trends Ecol. Evol. 2010;25(5):283-291.

11. Eyre-Walker A., Hurst L.D. The evolution of isochores. Nat. Rev. Genet. 2001;2(7):549-555.

12. Gilbert A.T., Servello F.A. Insectivory versus piscivory in Black Terns: implications for food provisioning and growth of chicks. Waterbirds. 2005;28(4):436-444.

13. Gorlov I.P., Ladygina T.Y., Serov O.L., Borodin P.M. Positional control of chiasma distribution in the house mouse. Chiasma distribution in mice homozygous and heterozygous for an inversion in chromosome 1. Heredity. 1991;66:453-458.

14. Graves J.A.M. Avian sex, sex chromosomes, and dosage compensation in the age of genomics. Chromosome Res. 2014;22(1):45-57.

15. Gregory T.R. Animal Genome Size Database. http://www.genomesize.com [2 декабря 2016].

16. Griffin D.K., Burt D.W. All chromosomes great and small: 10 years on. Chromosome Res. 2014;22(1):1-6.

17. Griffin D.K., Robertson L.B.W., Tempest H.G., Skinner B.M. The evolution of the avian genome as revealed by comparative molecular cytogenetics. Cytogenet. Genome Res. 2007;117(1-4):64-77.

18. Hammar B.O. The karyotypes of thirty-one birds. Hereditas. 1970; 65(1):29-58.

19. Kleckner N., Zickler D., Jones G.H., Dekker J., Padmore R., Henle J., Hutchinson J. A mechanical basis for chromosome function. Proc. Natl. Acad. Sci. USA. 2004;101(34):12592-12597.

20. Kolomiets O.L., Vorontsov N.N., Lyapunova E.A., Mazurova T.F. Ultrastructure, meiotic behavior, and evolution of sex chromosomes of the genus Ellobius. Genetica. 1991;84(3):179-189.

21. Lynn A., Koehler K.E., Judis L., Chan E.R., Cherry J.P., Schwartz S., Seftel A., Hunt P.A., Hassold T.J. Covariation of synaptonemal complex length and mammalian meiotic exchange rates. Science. 2002; 296(5576):2222-2225.

22. Mary N., Barasc H., Ferchaud S., Billon Y., Meslier F., Robelin D., Calgaro A., Loustau-Dudez A.-M., Bonnet N., Yerle M., Acloque H., Ducos A., Pinton A. Meiotic recombination analyses of individual chromosomes in male domestic pigs (Sus scrofa domestica). PloS ONE. 2014;9(6):e99123.

23. Matveevsky S., Bakloushinskaya I., Kolomiets O. Unique sex chromosome systems in Ellobius: How do male XX chromosomes recombine and undergo pachytene chromatin inactivation? Sci. Rep. 2016;6:29949.

24. McKee B.D., Handel M.A. Sex chromosomes, recombination, and chromatin conformation. Chromosoma. 1993;102(2):71-80.

25. Nanda I., Schlegelmilch K., Haaf T., Schartl M., Schmid M. Synteny conservation of the Z chromosome in 14 avian species (11 families) supports a role for Z dosage in avian sex determination. Cytogenet. Genome Res. 2008;122(2):150-156.

26. Nanda I., Shan Z., Schartl M., Burt D.W., Koehler M., Nothwang H.G., Grützner F., Paton I.R., Windsor D., Dunn I., Engel W., Staeheli P., Mizuno S., Haaf T., Schmid M. 300 million years of conserved synteny between chicken Z and human chromosome 9. Nat. Genet. 1999;21(3):258-259.

27. Nie W., O’Brien P.C., Fu B., Wang J., Su W., He K., Bed’Hom B., Volobuev V., Feguson-Smith M.A., Dobigny G., Yang F. Multidirectional chromosome painting substantiates the occurrence of extensive genomic reshuffling within Accipitriformes. BMC Evol. Biol. 2015;15(1):205.

28. Olsen K.M., Larsson H. Terns of Europe and North America. L.: Christopher Helm Publishers, 1995.

29. Otto S.P., Michalakis Y. The evolution of recombination in changing environments. Trends Ecol. Evol. 1998;13(4):145-151.

30. Pala I., Naurin S., Stervander M., Hasselquist D., Bensch S., Hansson B. Evidence of a neo-sex chromosome in birds. Heredity. 2012; 108(I. 3):264-272.

31. Pardo-Manuel de Villena F., Sapienza C. Recombination is proportional to the number of chromosome arms in mammals. Mamm. Genome. 2001;12(4):318-322.

32. Peters A.H., Plug A.W., van Vugt M.J., de Boer P. A drying-down technique for the spreading of mammalian meiocytes from the male and female germline. Chromosome Res. 1997;5(1):66-71.

33. Peterson D.G., Stack S.M., Healy J.L., Donohoe B.S., Anderson L.K. The relationship between synaptonemal complex length and genome size in four vertebrate classes (Osteicthyes, Reptilia, Aves, Mammalia). Chromosome Res. 1994;2(2):153-162.

34. Pigozzi M.I. Distribution of MLH1 foci on the synaptonemal complexes of chicken oocytes. Cytogenet. Genome Res. 2001;95(3-4): 129-133.

35. Pigozzi M.I. Diverse stages of sex-chromosome differentiation in tinamid birds: evidence from crossover analysis in Eudromia elegans and Crypturellus tataupa. Genetica. 2011;139(6):771-777.

36. Pigozzi M.I., Solari A.J. Extreme axial equalization and wide distribution of recombination nodules in the primitive ZW pair of Rhea americana (Aves, Ratitae). Chromosome Res. 1997;5(6):421-428.

37. Pigozzi M.I., Solari A.J. The ZW pairs of two paleognath birds from two orders show transitional stages of sex chromosome differentiation. Chromosome Res. 1999;7(7):541-551.

38. Pigozzi M.I., Solari A.J. Meiotic recombination in the ZW pair of a tinamid bird shows a differential pattern compared with neognaths. Genome. 2005;48(2):286-290.

39. Reeves A. MicroMeasure: a new computer program for the collection and analysis of cytogenetic data. Genome. 2001;44(3):439-443.

40. Romanov M.N., Farré M., Lithgow P.E., Fowler K.E., Skinner B.M., O’Connor R., Fonseka G., Backström N., Matsuda Y., Nishida C., Houde P., Jarvis E.D., Ellegren H., Burt D.W., Larkin D.M., GriffinD.K. Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics. 2014;15(1):1060.

41. Segura J., Ferretti L., Ramos-Onsins S., Capilla L., Farré M., Reis F., Oliver-Bonet M., Fernández-Bellón H., Garcia F., Garcia-Caldés M., Robinson T.J., Ruiz-Herrera A. Evolution of recombination in eutherian mammals: insights into mechanisms that affect recombination rates and crossover interference. Proc. Biol. Sci. 2013; 280(1771):20131945.

42. Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7(4):289-295.

43. Solari A.J. Equalization of Z and W axes in chicken and quail oocytes. Cytogenet. Genome Res. 1992;599(1):52-56.

44. Solari A.J., Pigozzi M.I. Recombination nodules and axial equalization in the ZW pairs of the Peking duck and the Guinea fowl. Cytogenet. Genome Res. 1993;64(3-4):268-272.

45. Szczys P., Lamothe K.A., Druzyaka A., Poot M.J., Siokhin V., van der Winden J. Range-wide patterns of population differentiation of Eurasian Black Terns (Chlidonias niger niger) related to use of discrete post-nuptial staging sites. J. Ornithol. 2016;1-14.

46. Szczys P., Nisbet I.C.T., Wingate D.B. Conservation genetics of the Common Tern (Sterna hirundo) in the North Atlantic region; implications for the critically endangered population at Bermuda. Conserv. Genet. 2012;13(4):1039-1043.

47. Torgasheva A.A., Borodin P.M. Immunocytological analysis of meiotic recombination in the gray goose (Anser anser). Cytogenet. Genome Res. 2017. DOI 10.1159/000458741.

48. Turner J.M.A. Meiotic sex chromosome inactivation. Development. 2007;134:1823-1831.

49. Youds J.L., Boulton S.J. The choice in meiosis – defining the factors that influence crossover or non-crossover formation. J. Cell Sci. 2011;124(4):501-513.

50. Zhou Q., Wang J., Huang L., Nie W., Wang J., Liu Y., Zhao X., Yang F., Wang W. Neo-sex chromosomes in the black muntjac recapitulate incipient evolution of mammalian sex chromosomes. Genome Biol. 2008;9:R98.

51. Zhou Q., Zhang J., Bachtrog D., An N., Huang Q., Jarvis E.D., Gilbert M.T.P., Zhang G. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346(6215):1246338.

52. Zickler D., Kleckner N. Recombination, pairing, and synapsis of homologs during meiosis. Cold Spring Harbor Perspect. Biol. 2015; 7(6):a016626.


Review

Views: 2237


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)