Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Development of the genetic classification of Aegilops columnaris Zhuk. chromosomes based on the analysis of introgression lines Triticum aestivum×Ae. columnaris

https://doi.org/10.18699/VJ17.243

Abstract

Aegilops columnaris Zhuk. is a potential source of new genes for wheat improvement. However, this species has not yet been used in practical breeding. In the present work we have for the first time reported the development and molecular-cytogenetic characterization of T. aestivum×Ae. columnaris introgression lines. Analysis has not revealed alien genetic material in five of the 20 lines we have studied, while the remaining lines carried from 1 to 3 pairs of Aegilops chromosomes as addition(s) or substitution(s) to wheat chromosomes. Altogether, five different chromosomes of Aegilops columnaris have been detected in the karyotypes of 15 lines by C-banding and fluorescent in-situ hybridization (FISH). Based on substitution spectra, these chromosomes were identified as 3Ае1, 3Ае2, 5Ае2, 6Ае1 and 6Ае2. In addition, another Aegilops chromosome has been found in the line 2305/1 as a monosomic addition; due to the lack of group-specific markers we were unable to assign this chromosome to a particular genome or a genetic group and therefore it was designated Ае-а. In several lines acrocentric and telocentric chromosomes have been revealed (Ae-b and Ae-c). It is most likely that these chromosomes were derived from unknown Aegilops chromosomes due to a large deletion. A comparison of electrophoretic spectra of gliadins in introgression lines L-2310/1 and L-2304/1 with substitutions of chromosome 6D with two different chromosomes of Ae. columnaris (these lines were assigned to the 6th homoeologous group based on C-banding data) has shown that they carry different alleles of the gliadin loci. This observation confirmed that lines L-2310/1 and L-2304/1 contained non-identical 6Ae chromosomes. Taking into consideration our previous results of FISH analyses, three other Ae. columnaris chromosomes can be assigned to homoeologous groups 1, 5 and 7 of the U-genome based on the location of 5S and 45S rDNA loci (1U and 5U) or pSc119.2 probe distribution (7U). Thus, based on our current data as well as on the results of earlier work, we can identify eight out of the 14 chromosomes of Aegilops columnaris.

About the Authors

A. A. Shishkina
Vavilov Institute of General Genetics RAS
Russian Federation
Moscow


A. Yu. Dragovich
Vavilov Institute of General Genetics RAS
Russian Federation
Moscow


A. S. Rouban
Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Russian Federation
Moscow


S. N. Sibikeev
Agricultural Research Institute for South-East Region
Russian Federation
Saratov


A. E. Druzhin
Agricultural Research Institute for South-East Region
Russian Federation
Saratov


E. D. Badaeva
Vavilov Institute of General Genetics RAS
Russian Federation
Moscow


References

1. Badaeva E.D., Amosova A.V., Samatadze T.E., Zoshchuk S.A., Shostak N.G., Chikida N.N., Zelenin A.V., Raupp W.J., Friebe B., Gill B.S. Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst. Evol. 2004;246:45-76. DOI 10.1007/s00606–003–0072–4.

2. Badaeva E.D., Badaev N.S., Gill B.S., Filatenko A.A. Intraspecific karyotype divergence in Triticum araraticum. Plant Syst. Evol. 1994;192(1):117-145. DOI 10.1007/BF00985912.

3. Badaeva E.D., Friebe B., Gill B.S. Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S–26S ribosomal RNA gene families in diploid species. Genome. 1996;39(6):1150-1158. DOI 10.1139/g96-145.

4. Badaeva E.D., Zoshchuk S.A., Paux E., Gay G., Zoshchuk N.V., Roger D., Zelenin A.V., Bernard M., Feuillet C. Fat element – a new marker for chromosome and genome analysis in the Triticeae.Chrom. Res. 2010;18(6):697-709. DOI 10.1007/s10577–010–9151–x.

5. Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19:545-560.

6. Bushuk W., Zillman R.R. Wheat cultivar identification by gliadin electrophoregrams. 1. Apparatus, method, and nomenclature. Can. J. Plant Sci. 1978;58:505-515.

7. Dvořák J., Lassner M.W., Kota R.S., Chen K.C. The distribution of the ribosomal RNA genes in the Triticum speltoides and Elytrigia elongata genomes. Can. J. Genet. Cytol. 1984;62(5):628-632.

8. Dvořák J., Luo M.-C., Yang Z.-L. Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing Aegilops species. Genetics. 1998;148:423-434.

9. Dvořák J., Zhang H.-B., Kota R.S., Lassner M. Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome. 1989;32(6):1003-1016.

10. Friebe B., Gill B.S. Chromosome banding and genome analysis in diploid and cultivated polyploid wheats. Methods in genome analysis in plants: their merits and piffals. Ed. P.P. Jauhar. N.Y.; L.; Tokyo: Boca Ration: CRC Press, 1996;39-60.

11. Kihara H. Considerations on the evolution and distribution of Aegilops species based on the analyser-method. Cytologia. 1954;19(4):336-357.

12. McIntosh R.A., Dubcovsky J., Rogers W.J., Morris C., Appels R., XiaX.C. Catalogue of Gene Symbols for Wheat: 2010. Available at: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.

13. Metakovsky E.V. Gliadin allele identification in common wheat. 2. Catalogue of gliadin alleles in common wheat. J. Gen. Breed. 1991;45:325-344.

14. Metakovsky E.V., Novoselskaya A.Yu. Gliadin allele identification in common wheat I. Methodological aspects of the analysis of gliadin patterns by one dimensional polyacrylamide gel electrophoresis. J. Gen. Breed. 1991;45:317-324.

15. Morris E.R., Sears E.R. Tsitogenetika pshenitsy i rodstvennykh form [Cytogenetics of wheat and its relatives]. Jakubziner M.M. (Ed.). Pshenitsa i ee uluchshenie [Wheat and wheat improvement]. Moscow, Kolos Publ., 1970;84-90. (in Russian)

16. Novosel’skaja A.Ju., Metakovskij E.V., Sozinov A.A. Investigation of polymorphisms of gliadin in some wheat varieties by the methods of one-dimensional and two-dimensional electrophoresis. Tsitologiya i genetika = Cytology and Genetics. 1983;17(5):45-50. (in Russian)

17. Novosel’skaja-Dragovich A.Ju. Genetics and genomics of wheat: storage proteins, ecological plasticity and immunity. Genetika = Genetics (Moscow). 2015;51(5):568-583. DOI 10.7868/S0016675815050045. (in Russian)

18. Novosel’skaja-Dragovich A.Ju., Krupnov V.A., Sajfulin R.A., Puhal’skij V.A. The dynamics of genetic diversity in Saratov cultivars of common wheat Triticum aestivum L. for gliadin coding loci over 80 years of scientific breeding. Genetika = Genetics (Moscow). 2003;39(10):1338-1346. (in Russian)

19. Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Report. 1986; 4(2):102-109.

20. Salina E.A., Egorova E.M., Adonina I.G., Dobrovol’skaja O.B., Budashkina E.B., Leonova I.N. DNA markers for genotyping lines of common wheat (Triticum aestivum L.) with genetic material of Aegilops speltoides Tausch. and Triticum timopheevii Zhuk. Vestnik VOGiS = The Herald of Vavilov Society for Geneticists and Breeding Scientists. 2008;12(4):620-628. (in Russian)

21. Salina E.A., Lim Y.K., Badaeva E.D., Shcherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Yu., Zoshchuk S.A., Leitch A.R. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49:1023-1035. DOI 10.1139/G06–050.

22. Schneider A., Linc G., Molnar-Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breeding. 2003;122:396-400. DOI 10.1046/j.1439–0523.2003.00891.x.

23. Schneider A., Molnar I., Molnar-Lang M. Utilisation of Aegilops (goatgrass) species to widen the genetic diversity of cultivated wheat. Euphytica. 2008;163:1-19. DOI 10.1007/s10681–007–9624–y.

24. Shepherd K.W. Chromosomal control of endosperm proteins in wheat and rye. Proc. 3rd Int. Wheat Genet. Symp. Eds. K.W. Finlay, K.W. Sherherd. Canberra. Austral. Acad. Sci., 1968;86-96.

25. Sozinov A.A., Poperelya F.A. Polymorphism of prolamins and breeding. Vestnik Selskokhozyaystvennoy Nauki = Herald of Agricultural Sciences. 1979;10:21-34. (in Russian)

26. Van Slageren M.W. Wild Wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. et Spach) Eig (Poaceae). Wageningen: Wageningen Agricultural University and ICARDA, Aleppo, Syria, 1994.

27. Zhang P., Dundas I.S., McIntosh R.A., Xu S.S., Park R.F., Gill B.S., Friebe B. Wheat–Aegilops Introgressions. Alien Introgression in Wheat Cytogenetics, Molecular Biology, and Genomics. Ed. M. Molnar-Lang, C. Ceoloni, J. Dolžel. Springer International Publishing Switzerland, 2015;221-243. DOI 10.1007/978–3–319–23494–6.


Review

Views: 3412


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)