Паразитические организмы родов Nosema, Crithidia и Lotmaria в популяциях пчел и шмелей: исследование в Индии


https://doi.org/10.18699/VJ17.317

Полный текст:


Аннотация

В последние десятилетия наблюдается резкое снижение численности популяций медоносных пчел и шмелей на территории большинства стран мира. Вклад в снижение численности данных опылителей вносят различные паразитические организмы (бактерии, грибы, простейшие, нематоды, клещи и насекомые). Паразиты рода Nosema (Microsporidia: Nosematidae) и родов Crithidia и Lotmaria (Kinetoplastida: Trypanosomatidae) оказывают значительное негативное влияние на численность медоносных пчел и шмелей. В недавних исследованиях, проведенных с использованием ядерных ДНК­маркеров, были описаны новые виды и генетические варианты данных паразитов. Целью настоящей работы являлось установление уровня зараженности медоносных пчел и шмелей микроспоридиями (Nosema spp.) и трипаносоматидами (Crithidia spp. и Lotmaria passim), а также изучение генетической вариабельности этих паразитов на ранее не исследованной территории Индии. В работе проанализировано 119 образцов из четырех видов медоносных пчел и пяти видов шмелей. Уровни зараженности популяций пчел и шмелей паразитическими организмами на территории двух штатов (Джамму и Кашмир, Карнатака) были определены с помощью полимеразной цепной реакции с праймерами, специфичными к кластеру генов  рибосомной РНК Nosema, Crithidia и Lotmaria. Совместное заражение популяций медоносных пчел и шмелей микроспоридиями и трипаносоматидами было зафиксировано на территории штата Джамму и Кашмир. В результате сравнительного анализа нуклеотидных последовательностей кластера генов рибосомной РНК установлено, что в популяциях медоносных пчел на территории Индии были представлены N. bombi, N. ceranae и L. passim. Популяции шмелей были поражены микроспоридией Nosema D и трипаносоматидами Crithidia bombi и Crithidia expoeki. В образцах медоносных пчел, собранных на территории штата Карнатака, паразиты родов Crithidia и Lotmaria не выявлены. В популяции медоносных пчел впервые выявлена микроспоридия N. bombi. Данные о распространении микроспоридий и трипаносоматид в популяциях медоносных пчел и шмелей по всему миру были обобщены и дополнены.

Об авторах

В. Ю. Вавилова
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук.
Россия
Новосибирск.


И. Д. Конопацкая
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Новосибирский национальный исследовательский государственный университет.
Россия
Новосибирск.


С. Л.  Лузянин
Институт биологии, экологии и природных ресурсов, Кемеровский государственный университет.
Россия
Кемерово.


М. Войцеховский
Институт наук об окружающей среде, Ягеллонский университет.
Россия
Краков.


А. Г. Блинов
Федеральный исследовательский центр Институт цитологии и генетики Сибирского отделения Российской академии наук; Институт систематики и экологии животных Сибирского отделения Российской академии наук.
Россия
Новосибирск.


Список литературы

1. Arismendi N., Bruna A., Zapata N., Vargas M. PCR-specific detection of recently described Lotmaria passim (Trypanosomatidae) in Chilean apiaries. J. Invertebr. Pathol. 2016;134:1-5.

2. Brown M.J.F. Microsporidia: an emerging threat to bumblebees? Trends Parasitol. 2017;S1471-4922. Brown M.J.F., Schmid-Hempel R., Schmid-Hempel P. Strong contextdependent virulence in a host-parasite system: reconciling genetic evidence with theory. J. Anim. Ecol. 2003;72:994-1002.

3. Chen D., Shen Z., Zhu F., Guan R., Hou J., Zhang J., Xu X., Tang X., Xu L. Phylogenetic characterization of a microsporidium (Nosema sp. MPr) isolated from the Pieris rapae. Parasitol. Res. 2012;111: 263-269.

4. Chen Y.P., Huang Z.Y. Nosema ceranae, a newly identified pathogen of Apis mellifera in the USA and Asia. Apidologie. 2010;41:364-374.

5. Cordes N., Huang W.F., Strange J.P., Cameron S.A., Griswold T.L., Lozier J.D., Solter L.F. Interspecific geographic distribution and variation of the pathogens Nosema bombi and Crithidia species in United States bumble bee populations. J. Invertebr. Pathol. 2012; 109:209-216.

6. Cornman R.S., Tarpy D.R., Chen Y., Jeffreys L., Lopez D., Pettis J.S., vanEngelsdorp D., Evans J.D. Pathogen webs in collapsing honey bee colonies. PLoS ONE. 2012;7:e43562.

7. Cox-Foster D.L., Conlan S., Holmes E.C., Palacios G., Evans J.D., Moran N.A., Quan P.L., Briese T., Hornig M., Geiser D.M., Martinson V., vanEngelsdorp D., Kalkstein A.L., Drysdale A., Hui J., Zhai J., Cui L., Hutchison S.K., Simons J.F., Egholm M., Pettis J.S., Lipkin W.I. A metagenomic survey of microbes in honey bee colony collapse disorder. Science. 2007;318:283-287.

8. Edgar R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792-1797.

9. Fantham H.B., Porter A. The morphology, biology and economic importance of Nosema bombi, N. sp., parasitic in various humble bees (Bombus spp.). Ann. Trop. Med. Parasit. 1914;8:623-638.

10. Felsenstein J. Phylogenies and the comparative method. Am. Nat. 1985;125:1-15.

11. Fries I., De Ruijter A., Paxton R.J., Da Silva A.J., Slemenda S.B., Pieniazek N.J. Molecular characterization of Nosema bombi (Microsporidia: Nosematidae) and a note on its sites of infection in Bombus terrestris (Hymenoptera: Apoidea). J. Apic. Res. 2001;40:91-96.

12. Fries I., Feng F., da Silva A., Slemenda S.B., Pieniazek N.J. Nosema ceranae n. sp. (Microspora, Nosematidae), morphological and molecular characterization of a microsporidian parasite of the Asian honey bee Apis cerana (Hymenoptera, Apidae). Eur. J. Protistol. 1996;32:356-365.

13. Gallot-Lavallée M., Schmid-Hempel R., Vandame R., Vergara C.H., Schmid-Hempel P. Large scale patterns of abundance and distribution of parasites in Mexican bumblebees. J. Invertebr. Pathol. 2016; 133:73-82.

14. Gatehouse H.S., Malone L.A. The ribosomal RNA gene region of Nosema apis (Microspora): DNA sequence for small and large subunit rRNA genes and evidence of a large tandem repeat unit size. J. Invertebr. Pathol. 1998;71:97-105.

15. Guindon S., Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 2003;52: 696-704.

16. Han B., Weiss L.M. Microsporidia: obligate intracellular pathogens within the Fungal Kingdom. Microbiol. Spectr. 2017;5(2).

17. Higes M., Martín-Hernández R., Botías C., Bailón E.G., González-Porto A.V., Barrios L., Del Nozal M.J., Bernal J.L., Jiménez J.J., Palencia P.G., Meana A. How natural infection by Nosema ceranae causes honeybee colony collapse. Environ. Microbiol. 2008;10:2659-2669.

18. Hornitzky M. Nosema disease: Literature review and three year survey of beekeepers. Pt. 2. Rural Industries Research and Development Corporation, 2008.

19. Huang W.F., Jiang J.H., Chen Y.W., Wang C.H. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie. 2007;38:30-37.

20. Langridge D.F., McGhee R.B. Crithidia mellificae n. sp.: An acidophilic trypanosomatid of honey bee Apis mellifera. J. Protozool. 1967; 14:485-487.

21. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23:2947-2948.

22. Li J., Chen W., Wu J., Peng W., An J., Schmid-Hempel P., SchmidHempel R. Diversity of Nosema associated with bumblebees (Bombus spp.) from China. Int. J. Parasitol. 2012;42:49-61.

23. Lipa J.J., Triggiani O. Crithidia bombi sp. n., a new flagellated parasite of a bumble bee Bombus terrestris L. (Hymenoptera, Apidae). Acta Protozool. 1988;27:287-290.

24. Liu H., Pan G., Li T., Huang W., Luo B., Zhou Z. Ultrastructure, chromosomal karyotype, and molecular phylogeny of a new isolate of microsporidian Vairimorpha sp. BM (Microsporidia, Nosematidae) from Bombyx mori in China. Parasitol. Res. 2012;110:205-210.

25. Malakauskas D.M., Altman E.C., Malakauskas S.J., Thiem S.M., Schloesser D.W. Ribosomal DNA identification of Nosema/Vairimorpha in freshwater polychaete, Manayunkia speciosa, from Oregon/California and the Laurentian Great Lakes. J. Invertebr. Pathol. 2015;132:101-104.

26. Martín-Hernández R., Botías C., Bailón E.G., Martínez-Salvador A., Prieto L., Meana A., Higes M. Microsporidia infecting Apis mellifera: Coexistence or competition. Is Nosema ceranae replacing Nosema apis? Environ. Microbiol. 2012;14:2127-2138.

27. Meeus I., De Graaf D.C., Jans K., Smagghe G. Multiplex PCR detection of slowly-evolving trypanosomatids and neogregarines in bumblebees using broad-range primers. J. Appl. Microbiol. 2010;109: 107-115.

28. Okonechnikov K., Golosova O., Fursov M., Varlamov A., Vaskin Y., Efremov I., Grehov G., Kandrov O.G., Rasputin D., Syabro K., Tleukenov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166-1167.

29. Plischuk S., Sanscrainte N.D., Becnel J.J., Estep A.S., Lange C.E. Tubulinosema pampeana sp. n. (Microsporidia, Tubulinosematidae), a pathogen of the South American bumble bee Bombus atratus. J. Invertebr. Pathol. 2015;126:31-42.

30. Ravoet J., Maharramov J., Meeus I., De Smet L., Wenseleers T., Smagghe G., de Graaf D.C. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. PLoS ONE. 2013;8:e72443.

31. Runckel C., Flenniken M.L., Engel J.C., Ruby J.G., Ganem D., Andino R., DeRisi J.L. Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, Nosema, and Crithidia. PLoS ONE. 2011;6:e20656.

32. Schmid-Hempel P. On the evolutionary ecology of host-parasite interactions: Addressing the question with regard to bumblebees and their parasites. Naturwissenschaften. 2001;88:147-158. Schmid-Hempel P., Reber Funk C. The distribution of genotypes of the trypanosome parasite, Crithidia bombi, in populations of its host, Bombus terrestris. Parasitology. 2004;129:147-158.

33. Schmid-Hempel R., Eckhardt M., Goulson D., Heinzmann D., Lange C., Plischuk S., Escudero L.R., Salathé R., Scriven J.J., Schmid-Hempel P. The invasion of southern South America by imported bumblebees and associated parasites. J. Anim. Ecol. 2014;83:823-837.

34. Schmid-Hempel R., Salathe R., Tognazzo M., Schmid-Hempel P. Genetic exchange and emergence of novel strains in directly transmitted trypanosomatids. Infect. Genet. Evol. 2011;11:564-571.

35. Schmid-Hempel R., Tognazzo M. Molecular divergence defines two distinct lineages of Crithidia bombi (Trypanosomatidae), parasites of bumblebees. J. Eukaryot. Microbiol. 2010;57:337-345.

36. Schwarz R.S., Bauchan G.R., Murphy C.A., Ravoet J., De Graaf D.C., Evans J.D. Characterization of two species of trypanosomatidae from the honey bee Apis mellifera: Crithidia mellificae Langridge and McGhee, and Lotmaria passim n. gen., n. sp. J. Eukaryot. Microbiol. 2015;62:567-583.

37. Smith M.L. The honey bee parasite Nosema ceranae: transmissible via food exchange? PLoS ONE. 2012;7:e43319.

38. Sokolova Y.Y., Sokolov I.M., Carlton C.E. Identification of Nosema bombi Fantham and Porter 1914 (Microsporidia) in Bombus impatiens and Bombus sandersoni from Great Smoky Mountains National Park (USA). J. Invertebr. Pathol. 2010;103:71-73.

39. Szentgyörgyi H., Blinov A., Eremeeva N., Luzyanin S., Grześ I.M., Woyciechowski M. Bumblebees (Bombidae) along pollution gradient – heavy metal accumulation, species diversity, and Nosema bombi infection level. Polish J. Ecol. 2011;59:599-610.

40. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 2013;30:2725-2729.

41. Tay W.T., O’Mahony E.M., Paxton R.J. Complete rRNA gene sequences reveal that the microsporidium Nosema bombi infects diverse bumblebee (Bombus spp.) hosts and contains multiple polymorphic sites. J. Eukaryot. Microbiol. 2005;52:505-513.

42. Tritschler M., Retschnig G., Yañez O., Williams G.R., Neumann P. Host sharing by the honey bee parasites Lotmaria passim and Nosema ceranae. Ecol. Evol. 2017;7:1850-1857.

43. vanEngelsdorp D., Evans J.D., Saegerman C., Mullin C., Haubruge E., Nguyen B.K., Frazier M., Frazier J., Cox-Foster D., Chen Y., Underwood R., Tarpy D.R., Pettis J.S. Colony collapse disorder: A descriptive study. PLoS ONE. 2009;4:e6481.

44. Vavilova V., Sormacheva I., Woyciechowski M., Eremeeva N., Fet V., Strachecka A., Bayborodin S.I., Blinov A. Distribution and diversity of Nosema bombi (Microsporidia: Nosematidae) in the natural populations of bumblebees (Bombus spp.) from West Siberia. Parasitol. Res. 2015;114:3373-3383.

45. Yourth C.P., Brown M.J.F., Schmid-Hempel P. Effects of natal and novel Crithidia bombi (Trypanosomatidae) infections on Bombus terrestris hosts. Insectes Soc. 2008;55:86-90.

46. Zander E. Tierische Parasiten als Krankenheitserreger bei der Biene. Münch. Bienenztg. 1909;31:196-204.


Дополнительные файлы

Просмотров: 182

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)