Preview

Вавиловский журнал генетики и селекции

Расширенный поиск

ВЛИЯНИЕ ЧУЖЕРОДНОГО ГЕНЕТИЧЕСКОГО МАТЕРИАЛА НА ПРОЯВЛЕНИЕ ХОЗЯЙСТВЕННО ВАЖНЫХ ПРИЗНАКОВ МЯГКОЙ ПШЕНИЦЫ (T. aestivum L.)

https://doi.org/10.18699/VJ18.367

Аннотация

Одной из актуальных проблем современной генетики и селекции является расширение генетического разнообразия мягкой пшеницы по генам устойчивости к биотическим и абиотическим стрессовым факторам, урожайности и качества зерна. Дикорастущие и культурные родичи c различным уровнем гомеологии геномов постоянно используются для расширения генетического разнообразия мягкой пшеницы по генам, повышающим устойчивость к болезням и вредоносным насекомым. Ведутся работы по поиску и интродукции генетических факторов, влияющих на содержание белка в зерне и компоненты урожайности. Несмотря на то что локусы устойчивости в организме донора оказывают длительную защиту против популяций патогенов, разнообразных по расовому составу, интрогрессия целевых локусов в геном мягкой пшеницы может приводить к значительному снижению эффективности генов, вплоть до полной потери экспрессии. Перенос чужеродных генов от отдаленных видов происходит в составе целых хромосом, хромосомных плеч либо протяженных транслоцированных фрагментов, которые вместе с целевыми локусами могут содержать дополнительный генетический материал, оказывающий влияние на другие хозяйственно ценные признаки. Поэтому при интродукции генов устойчивости к болезням в коммерческие сорта пшеницы важно учитывать эффекты чужеродных замещений и транслокаций на такие признаки, как тип развития, время колошения, продуктивность, качество зерна, хлебопекарные качества. Негативные эффекты, наблюдаемые при интрогрессии генов от видов с отдаленными геномами, принято связывать с чужеродным хроматином, который переносится вместе с целевым локусом. Однако во многих случаях такие эффекты могут быть результатом влияния генотипической среды реципиента. Публикации, в которых приводятся результаты сравнительной оценки сортов и селекционных линий с чужеродными замещениями и транслокациями, не всегда  позволяют однозначно ответить на этот вопрос. В настоящей статье представлен обзор литературных данных по влиянию  чужеродных интрогрессий на хозяйственно важные признаки мягкой пшеницы.

Об авторе

И. Н. Леонова
Федеральный исследовательский центр, Институт цитологии и генетики Сибирского отделения Российской академии наук
Россия

Новосибирск



Список литературы

1. Adonina I.G., Petrash N.V., Timonova E.M., Christov Yu.A., Salina E.A. Construction and study of leaf rust resistant common wheat lines with translocations of Aegilops speltoides Tausch. genetic material. Rus. J. Genet. 2012;48:404­409. DOI 10.1134/S1022795412020020/.

2. Afanasenko O.S. Problems of raising crop varieties with persistent resistance to diseases. Zashchita i Karantin Rasteniy = Plant Protection and Quarantine. 2010;3:4­10. (in Russian)

3. Arora S., Singh N., Kaur S., Bains N.S., Uauy C., Poland J., Chhuneja P. Genome­wide association study of grain architecture in wild wheat Aegilops tauschii. Front. Plant Sci. 2017;8:886. DOI 10.3389/fpls.2017.00886.

4. Bai D., Knott D.R. Suppression of rust resistance in bread wheat (Triticum aestivum L.) by D­genome chromosomes. Genome. 1992;35: 276­282. DOI 10.1139/g92­043.

5. Belan I.A., Rosseeva L.P., Trubacheeva N.V., Osadchaya T.S., Dorogina O.V., Zhmud E.V., Kolmakov Y.V., Blokhina N.P., Kravtsova L.A., Pershina L.A. Some agronomic important features of spring wheat cultivar Omskaya 37 lines containing wheat­rye translocation 1RS.1BL. Vestnik VOGiS = Herald Vavilov Society Geneticists Breeding Scientists. 2010;14:632­640. (in Russian)

6. Burnett C.J., Lorenz K.J., Carver B.F. Effects of the 1B/1R translocation in wheat on composition and properties of grain and lour. Euphytica. 1995;86:159­166. DOI 10.1007/BF00016353.

7. Chaudhary H.K., Kaila V., Rather S.A., Badiyal A., Hussain W., Jamwal N.S., Mahato A. Wheat. In: A. Pratap, J. Kumar (Eds.). Alien Gene Transfer in Crop Plants. Vol. 2. Achievements and Impacts. New York: Springer­Verlag, 2014;1­27. DOI 10.1007/978­1­4614­9572­7_1.

8. Chen P., Liu W., Yuan J., Wang X., Zhou B., Wang S., Zhang S., Feng Y., Yang B., Liu G., Liu D., Qi L., Zhang P., Friebe B., Gill B.S. Development and characterization of wheat­Leymus racemosus translocation lines with resistance to Fusarium Head Blight. Theor. Appl. Genet. 2005;111:941­948. DOI 10.1007/s00122­005­0026­z.

9. Chumanova E.V., Efremova T.T., Trubacheeva N.V., Arbuzova V.S., Rosseeva L.P. Chromosome composition of wheat­rye lines and the inluence of rye chromosomes on disease resistance and agronomic traits. Rus. J. Genet. 2014;50(11):1169­1178. DOI 10.7868/S0016675814110034.

10. Dakouri A., McCallum B.D., Radovanovic N., Cloutier S. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol. Breed. 2013;32:663­677. DOI 10.1007/s11032­013­9899­8.

11. Druzhin A.E., Sibikeev S.N., Krupnov V.A., Voronina S.A. Creation of spring common wheat resistant to a pathogen complex by introgressive breeding. Dostizheniya nauki i tekhniki APK = Achievements of Science and Technology of AIC. 2011;1:22­24. (in Russian)

12. Dyck P.L., Samborsky D.J. Inheritance of virulence in Puccinia recondita on alleles at the Lr2a locus for resistance in wheat. Can. J. Genet. Cytol. 1974;16:323­332.

13. Ehdaie B., Whitkus R.W., WainesJ.G. Root biomass, water­use eficiency, and performance of wheat­rye translocations of chromosomes 1 and 2 in spring bread wheat ‘Pavon’. Crop Sci. 2003;43:710­717. DOI 10.2135/cropsci2003.7100.

14. Friebe B., Jiang J., Raupp W.J., McIntosh R.A., Gill B.S. Characterization of wheat­alien translocation conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59­87. DOI 10.1007/BF00035277.

15. Gao L., Turner M.K., Chao S., Kolmer J., Anderson J.A. Genome wide association study of seedling and adult plant leaf rust resistance in elite spring wheat breeding lines. PLoS One. 2016;11(2):e0148671. DOI 10.1371/journal.pone.0148671.

16. Gerard G.S., Borner A., Lohwasser U., Simon M.R. Genome­wide association mapping of genetic factors controlling Septoria tritici blotch resistance and their associations with plant height and heading date in wheat. Euphytica. 2017;213:27. DOI 10.1007/s10681­016­1820­1.

17. Gordei I.A. Tritikale. Geneticheskie osnovy sozdaniya [Triticale. Genetic basis of development]. Minsk: Nauka i tekhnika Publ., 1992. (in Russian)

18. Grandillo S., Tanksley S.D., Zamir D. Exploitation of natural biodiversity through genomics. In: R.K. Varshney, R. Tuberosa (Eds.). Genomics­assisted crop improvement. Dordrecht: Springer, 2007;121­150. DOI 10.1007/978­1­4020­6295­7_6.

19. Haggag M.E.A., Samborski D.J., Dyck P.L. Genetics of pathogenicity in three races of leaf rust on four wheat varieties. Can. J. Genet. Cytol. 1973;15:73­82.

20. Hoffmann B. Alteration of drought tolerance of winter wheat caused by translocation of rye chromosome segment 1R. Cereal Res. Commun. 2008;36:269­278. DOI 10.1556/CRC.36.2008.2.7.

21. Howell T., Hale I., Jankuloski L., Bonafede M., Gilbert M., Dubcovsky J. Mapping a region within the 1RS.1BL translocation in common wheat affecting grain yield and canopy water status. Theor. Appl. Genet. 2014;127:2695­2709. DOI 10.1007/s00122­014­2408­6.

22. Hurni S., Brunner S., Stirnweis D., Herren G., Peditto D., McIntosh R.A., Keller B. The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 2014;79:904­913. DOI 10.1111/tpj.12593.

23. Hysing S.C., Hsam S.L.K., Singh R.P., Huerto­Espino J., Boyd L.A., Koebner R.D., Combron S., Jonson J.W., Bland D.E., Liljeroth E., Merker A. Agronomic performance and multiple disease resistance in T2BS.2RL wheat­rye translocation lines. Crop Sci. 2007;47:254­260. DOI 10.2135/cropsci2006.04.0269.

24. Kazi A.G., Rasheed A., Mujeeb­Kazi A. Biotic stress and crop improvement: a wheat focus around novel strategies. In: K. Hakem, P. Ahmad, M. Ozturk (Eds.). Crop Improvement. Boston: Springer, 2013;239­267. DOI 10.1007/978­1­4614­7028­1_7.

25. Kim W., Jonson P.S., Baenziger P.S., Lukaszewski A.J., Gaines C.S. Agronomic effect of wheat­rye translocation carrying rye chromatin (1R) from different sources. Crop Sci. 2004;44:1254­1258. DOI 10.2135/cropsci2004.1254.

26. Kolmer J.A. Genetics of resistance to wheat leaf rust. Annu. Rev. Phytopathol. 1996;34:435­455. DOI 10.1146/annurev.phyto.34.1.435.

27. Kolmer J.A., Anderson J.A. First detection in North America of viru lence in wheat leaf rust (Puccinia triticina) to seedling plants of wheat with Lr21. Plant Dis. 2011;95:1032. DOI 10.1094/PDIS­04­11­0275.

28. Kolomiets T.M., Pankratova L.F., Pakholkova E.V. Wheat (Triticum L.) cultivars from GRIN collection (USA) bred for persistent resistance to Septoria tritici and Stagonospora nodorum blotch. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(3):561­569. DOI 10.15389/agrobiology.2017.3.561eng.

29. Krupnov V.A., Sibikeev S.N. Identiitsirovannyy genofond rasteniy i selektsiya [The identiied plant gene pool and breeding]. St­Petersburg: VIR Publ., 2005. (in Russian)

30. Kumlay A.M., Baenziger P.S., Gill K.S., Shelton D.R., Graybosch R.A., Lukaszewski A.J., Wesenberg D.M. Understanding the effect of rye chromatin in bread wheat. Crop Sci. 2003;43:1643­1651. DOI 10.2135/cropsci2003.1643.

31. Laikova L.I., Arbuzova V.S., Efremova T.T., Popova O.M., Ermakova M.F. Estimation of grain productivity and quality in immune introgression lines of soft wheat of Saratovskaya 29 variety. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2007;5:75­85. (in Russian)

32. Lee J.H., Graybosch R.A., Peterson C.J. Quality and biochemical effects of a 1RS.1BL wheat­rye translocation in wheat. Theor. Appl. Genet. 1995;90:105­112. DOI 10.1007/BF00221002.

33. Leonova I.N., Roder M.S., Budashkina E.B., Kalinina N.P., Salina E.A. Molecular analysis of leaf rust­resistant introgression lines obtained by crossing of hexaploid wheat Triticum aestivum with tetraploid wheat Triticum timopheevii. Rus. J. Genet. 2002;38:1397­1403. DOI 10.1023/A:1021691822962.

34. Leonova I.N., Budashkina E.B., Flath K., Weidner A., Borner A., Roder M.S. Microsatellite mapping of a leaf rust resistance gene transferred to common wheat from Triticum timopheevii. Cereal Res. Commun. 2010;38:211­219. DOI 10.1556/CRC.38.2010.2.7.

35. Leonova I.N., Skolotneva E.S., Salina E.A. Resistance to fungal diseases of spring wheat varieties from different Russian regions. Proc. of the 4th Int. Conf. on Plant Genetics, Genomics, Bioinformatics and Biotechnology (PlantGen’2017). Almaty, May 29 – June 02. 2017a;170.

36. Leonova I.N., Stasyuk A.I., Skolotneva E.S., Salina E.A. Enhancement of leaf rust resistance of Siberian winter wheat varieties by markerassisted selection. Cereal Res. Commun. 2017b;45:621­632. DOI 10.1556/0806.45.2017.048.

37. Li H., Lv M., Song L., Zhang J., Gao A., Li L., Liu W. Production and identiication of Wheat­Agropyron cristatum 2P translocation lines. PLoS One. 2016a;11(1):e0145928. DOI 10.1371/journal. pone.0145928.

38. Li Z., Ren T., Yan B., Tan F., Yang M., Ren Z. A mutant with expression deletion of gene Sec-1 in a 1RS.1BL line and its effect on production quality of wheat. PLoS One. 2016b;11(1):e0146943. DOI 10.1371/journal.pone.0146943.

39. Liu W., Danilova T.V., Rouse M.N., Bowden R.L., Friebe B., Gill B.S., Pumphrey M.O. Development and characterization of a compensating wheat­Thinopyrum intermedium Robertsonian translocation with Sr44 resistance to stem rust (Ug99). Theor. Appl. Genet. 2013;126:1167­1177. DOI 10.1007/s00122­013­2044­6.

40. Liu Y., Wang L., Mao S., Liu K., Lu Y., Wang J., Wei Y., Zheng Y. Genome­wide association study of 29 morphological traits in Aegilops tauschii. Sci. Rep. 2015;5:15562. DOI 10.1038/srep15562.

41. Ma Y.Y., Chen G.Y., Zhang L.Q., Liu Y.X., Liu D.C., Wang J.R., Pu Z.E., Zhang L., Lan X.J., Wei Y.M., Liu C.J., Zheng Y.L. QTL mapping for important agronomic traits in synthetic hexaploid wheat derived from Aegilops tauschii ssp. tauschii. J. Integr. Agric. 2014; 13(9):1835­1844. DOI 10.1016/S2095­3119(13)60655­3.

42. Marais G.F. The modiication of a common wheat­Thinopyrum distichum translocated chromosome with a locus homeoallelic to Lr19. Theor. Appl. Genet. 1992;85:73­78.

43. McIntosh R.A., Wellings C.R., Park R.F. Wheat Rust: An Atlas of Resistance Genes. Australia: CSIRO Publ., 1995.

44. McIntosh R.A., Zhang P., Cowger C., Park R., Lagudah E.S., Hoxha S. Rye­derived powdery mildew resistance gene Pm8 in wheat is suppressed by the Pm3 locus. Theor. Appl. Genet. 2011;123:359­367. DOI 10.1007/s00122­011­1589­5.

45. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers J., Morris C., Appels R., Xia X.C. Catalogue of Gene Symbols for Wheat 2013. Available at: https://shigen.nig.ac.jp/wheat/komugi/genes/

46. Merker A., Forsstrom P.O. Isolation of mildew resistant wheat­rye translocations from a double substitution line. Euphytica. 2000;115:167­172. DOI 10.1023/A:1004018500970.

47. Muleta K.T., Bulli P., Rynearson S., Chen X., Pumphrey M. Loci asso­ciated with resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a core collection of spring wheat (Triticum aestivum). PLoS One. 2017;12(6):e0179087. DOI 10.1371/journal.pone.0179087.

48. Ogbonnaya F.C., Abdalla O., Mujeeb­Kazi A., Kazi A.G., Xu S.S., Gosman N., Lagudah E.S., Bonnett D., Sorrells M.E., Tsujimoto H. Synthetic hexaploids: harnessing species of the primary gene pool for wheat improvement. Plant Breed. Rev. 2013;37:35­122. DOI 10.1002/9781118497869.ch2.

49. Ortelli S., Winzeler H., Fried P.M., Nosberger J., Winzeler M. Leaf rust resistance gene Lr9 and winter wheat yield reduction. I. Yield and yield components. Crop Sci. 1996;36:1590­1595. DOI 10.2135/cropsci1996.0011183X003600060030x.

50. Plakhotnik V.V., Zelenova Yu.V., Sudnikova V.P. Sources and highperformance donors for spring wheat breeding for resistance to environmental stress factors. Voprosy sovremennoy nauki i praktiki. Universitet im. V.I. Vernadskogo = Problems of Contemporary Science and Practice. Vernadsky University. 2014;1(50):109­113. (in Russian)

51. Pretorius Z.A. Detection of virulence to Lr41 in a South African pathotype of Puccinia recondita f. sp. tritici. Plant Dis. 1997;81(4):423. DOI 10.1094/PDIS.1997.81.4.423A.

52. Pretorius Z.A., Rijkenberg F.H.J., Wilcoxson R.D. Inluence of genetic background on the expression of wheat leaf rust resistance gene Lr22a. Phytopathology. 1990;80:579­584.

53. Rabinovich S.V. Importance of wheat­rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100:323­340. DOI 10.1023/A:1018361819215.

54. Ren T.H., Chen F., Yan B.J., Zhang H.Q., Ren Z.L. Genetic diversity of wheat­rye 1BL.1RS translocation lines derived from different wheat and rye sources. Euphytica. 2012;183:133­146. DOI 10.1007/s10681­011­0412­3.

55. Salina E.A., Adonina I.G., Badaeva E.D., Kroupin P.Yu., Stasyuk A.I., Leonova I.N., Shishkina A.A., Divashuk M.G., Starikova E.V., Khuat Thi Mai L., Syukov V.V., Karlov G.I. A Thinopyrum intermedium chromosome in bread wheat cultivars as a source of genes conferring resistance to fungal diseases. Euphytica. 2015;204:91­101. DOI 10.1007/s10681­014­1344­5.

56. Santra M., Wang H., Seifert S., Haley S. Double haploid laboratory protocol for wheat using wheat­maize wide hybridization. Methods Mol. Biol. 2017;1679:235­249. DOI 10.1007/978­1­4939­7337­8_14.

57. Schlegel R., Korzun V. About the origin of 1RS.1BL wheat­rye chromosome translocations from Germany. Plant Breed. 1997;116:537­540. DOI 10.1111/j.1439­0523.1997.tb02186.x.

58. Silkova O.G., Ivanova Y.N., Krivosheina E.A., Bondarevich E.B., Solovei L.A., Sycheva E.A., Dubovets N.I. Wheat chromosome instability in the selfed progeny of the double monosomics 1Rv­1A. Biologia Plantarum. 2017. DOI 10.1007/s10536­017­0757­0.

59. Singh H., Johnson R., Seth D. Genes for race­speciic resistance to yellow rust (Puccinia striiformis) in Indian wheat cultivars. Plant Pathol. 1990;39:424­433. DOI 10.1111/j.1365­3059.1990.tb02518.x.

60. Slikova S., Gregova E., Bartos P., Kraic J. Marker­assisted selection for leaf rust resistance in wheat by transfer of gene Lr19. Plant Protect. Sci. 2003;39:13­17.

61. Stasyuk A.I., Leonova I.N., Salina E.A. Variability of agronomically important traits in spring wheat hybrids obtained by marker­assisted selection from crosses of winter wheat with spring wheat donors of resistance genes. Selskokhozyaystvennaya Biologiya = Agricultural Bio ­ logy. 2017;52(3):526­534. DOI 10.15389/agrobiology.2017.3.526eng.

62. The T.T., Baker E.P. Basic studies relating to the transference of genetic characters from Triticum monococcum L. to hexaploid wheat. Aust. J. Biol. Sci. 1975;28:189­199.

63. Timonova E.M., Leonova I.N., Roder M.S., Salina E.A. Marker­assisted development and characterization of a set of Triticum aestivum lines carrying different introgressions from the T. timopheevii genome. Mol. Breed. 2013;31:123­136. DOI 10.1007/s11032­012­9776­x.

64. Tomar S.M.S., Singh S.K., Sivasamy M., Vinod. Wheat rust in India: Resistance breeding and gene deployment. Indian J. Genet. 2014; 74:129­156. DOI 10.5958/0975­6906.2014.00150.3.

65. Tyagi S., Mir R.R., Kaur H., Chhuneja P., Ramesh B., Balyan H.S., Gupta P.K. Marker­assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Mol. Breed. 2014;34:167­175. DOI 10.1007/s11032­014­0027­1.

66. Tyunin V.А., Shreyder Е.R., Gultyaeva E.I., Shaydayuk E.L. Characteristics of virulence of Puccinia triticina populations and the potential of the Lr24, Lr25, LrSp genes for spring common wheat breeding in the Southern Ural. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):523­529. DOI 10.18699/VJ17.269 (in Russian)

67. Vida G., Gal M., Uhrin A., Veisz O., Syed N.H., Flavell A.J., Wang Z., Bedo Z. Molecular markers for the identiication of resistance genes and marker­assisted selection in breeding wheat for leaf rust resistance. Euphytica. 2009;170:67­76. DOI 10.1007/s10681­009­9945­0.

68. Volkova L.V., Bebyakin V.M., Lyskova I.V. Plasticity and stability of spring wheat varieties and breeding forms according to grain productivity and quality. Rus. Agricult. Sci. 2010;36:1­4. DOI 10.3103/S10687410010015.

69. Wellings C.R., Singh R.P., Yahyaoui A., Nazari K., McIntosh R.A. The development and application of near­isogenic lines for monitoring cereal rust pathogens. Proc. of the Borlaug Global Rust Initiative Technical Workshop (BGRI). Mexico, 2009;77­87.

70. Zhang J., Zhang J., Liu W., Han H., Lu Y., Yang X., Li X., Li L. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand­grain weight and spike length. Theor. Appl. Genet. 2015;128:1827­1837. DOI 10.1007/s00122­015­2550­9.

71. Zhang W., Lukaszewski A.J., Kolmer J., Soria M.A., Goyal S., Dubcovsky J. Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y ) genes from Lophopyrum ponticum. Theor. Appl. Genet. 2005;111:573­582. DOI 10.1007/s00122­005­2048­y.


Рецензия

Просмотров: 854


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)