СЕЛЕКЦИЯ НА СОДЕРЖАНИЕ АНТИОКСИДАНТОВ В ЗЕРНЕ КАК ПЕРСПЕКТИВНОЕ НАПРАВЛЕНИЕ ДЛЯ ПОЛУЧЕНИЯ ПРОДУКТОВ ЗДОРОВОГО ПИТАНИЯ


https://doi.org/10.18699/VJ18.370

Полный текст:


Аннотация

Согласно Доктрине продовольственной безопасности Российской Федерации, в ближайшей перспективе предполагается расширение ассортимента продуктов здорового питания. Вследствие этого необходим поиск соответствующих пищевых источников. К веществам, способствующим профилактике ряда серьезных заболеваний человека, относятся антиоксиданты, а одним из важных параметров качества пищевых продуктов и ингредиентов выступает их антиоксидантная активность. В настоящее время суммарное содержание антиоксидантов и их антиоксидантная активность достаточно полно установлены в овощах и фруктах. При этом найдено, что по сравнению с эквивалентным количеством мягких фруктов или широко употребляемых в пищу овощей цельное зерно злаков обеспечивает более высокое количество связанных полифенолов. Последние включаются в обмен веществ в толстой кишке и могут обеспечивать тем самым положительное влияние на здоровье человека. На примере 30 различных коммерческих зерновых завтраков показано, что содержащиеся в средней порции хлопьев, приготовленных на овсяной основе, уровни полифенолов сопоставимы с таковыми, находящимися в эквивалентном количестве овощей и фруктов. Известно, что зерно овса и ячменя имеет высокую питательную ценность, содержит ненасыщенные жирные кислоты, основные минеральные элементы, белки и бетаглюканы (самые высокие уровни среди зерновых злаков), а также характеризуется наличием разнообразных химических веществ с антиоксидантными свойствами. В последние годы в некоторых западных странах начаты работы по изучению содержания антиоксидантов в зерне различных культурных злаков. В России лишь небольшое количество работ посвящено исследованию этих важных химических соединений в зерне овса и ячменя. Следует отметить, что, хотя зерновые культуры считаются одним из основных компонентов питания человека, исследований в области определения их антиоксидантной активности проведено недостаточно. С целью привлечения внимания российских растениеводов, селекционеров, физиологов растений, генетиков и биотехнологов к указанной проблеме читателю предлагается обзор современной литературы.


Об авторах

В. И. Полонский
Красноярский государственный аграрный университет
Россия


И. Г. Лоскутов
Федеральный исследовательский центр, Всероссийский институт генетических ресурсов растений им. Н.И. Вавилова (ВИР); Санкт-Петербургский государственный университет
Россия


А. В. Сумина
Хакасский государственный университет им. Н.В. Катанова
Россия

Абакан



Список литературы

1. Adom K.K., Liu R.H. Antioxidant activity of grains. J. Agric. Food Chem. 2002;50(21):6182­6187.

2. Alfieri M., Redaelli R. Oat phenolic content and total antioxidant capacity during grain development. J. Cereal Sci. 2015;65(9):39­42.

3. Andersson A.A.M., Lampi A.M., Nyström L., Piironen V., Li L., Ward J.L., Gebruers K., Courtin C.M., Delcour J.A., Boros D., Fraś A., Dynkowska W., Rakszegi M., Bedő Z., Shewry P.R., Aman P. Phytochemical and dietary fiber components in barley varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008;56(21):9767­9776.

4. Aprodu I., Banu I. Antioxidant properties of wheat mill streams. J. Cereal Sci. 2012;56(2):189­195.

5. Berezhnaya O.V., Dubtsov G.G., Voyno L.I. Wheat seedlings as an ingredient for foodstuffs. Pischevaya promishlennost = Food Processing Industry. 2015;5:26­29. (in Russian)

6. Blandino M., Locatelli M., Sovrani V., Coïsson J.D., Rolle L., Travaglia F., Giacosa S., Bordiga M., Scarpino V., Reyneri A., Arlorio M. Progressive pearling of barley kernel: Chemical characterization of pearling fractions and effect of their inclusion on the nutritional and technological properties of wheat bread. J. Agric. Food Chem. 2015; 63(25):5875­5884.

7. Bondia­Pons I., Aura A.M., Vuorela S., Kolehmainen M., Mykkänen H., Poutanen K. Rye phenolics in nutrition and health. J. Cereal Sci. 2009;49(3):323­336.

8. Branković G., Dragičević V., Dodig D., Zorić M., Knežević D., Žilić S., Denčić S., Šurlan G. Genotype × environment interaction for antioxidants and phytic acid contents in bread and durum wheat as influenced by climate. Chilean J. Agric. Res. 2015;75(2):139­146.

9. Broeck H.C., Londono D.M., Timmer R., Smulders M.J.M., Gilissen L.J.W., Meer I.M. Profiling of nutritional and health­related compounds in oat varieties. Foods. 2016;5(2):2­11.

10. Calado J.C.P., Albertão P.A., de Oliveira E.A., Letra M.H.S., Sawaya A.C.H., Marcucci M.C. Flavonoid contents and antioxidant activity in fruit, vegetables and other types of food. Agric. Sci. 2015; 6(2):426­435.

11. Cavallero A., Gianinetti A., Finocchiaro F., Delogu G., Stanca A.M. Tocols in hull­less and hulled barley genotypes grown in contrasting environments. J. Cereal Sci. 2004;39(2):175­180.

12. Chandrasekara A., Naczk M., Shahidi F. Effect of processing on the antioxidant activity of millet grains. Food Chem. 2012;133(1):1­9.

13. Chandrasekara A., Shahidi F. Determination of antioxidant activity in free and hydrolyzed fractions of millet grains and characterization of their phenolic profiles by HPLC­DAD­ESI­MSn. J. Funct. Foods. 2011;3(3):144­158.

14. Chauhan A., Saxena D.C., Singh S. Total dietary fibre and antioxidant activity of gluten free cookies made from raw and germinated amaranth (Amaranthus spp.) flour. LWT Food Sci. Technol. 2015; 63(2):939­945.

15. Chinma C.E., Ramakrishnan Y., Ilowefah M., Hanis­Syazwani M., Muhammad K. Properties of cereal brans: A review. Cereal Chem. 2015;92(1):1­7.

16. Das A.K., Singh V. Antioxidative free and bound phenolic constituents in pericarp, germ and endosperm of Indian dent (Zea mays var. indentata) and flint (Zea mays var. indurata) maize. J. Funct. Foods. 2015;13(2):363­374.

17. Dias J.S. Nutritional quality and health benefits of vegetables: A review. Food Nutr. Sci. 2012;3(10):1354­1374.

18. Do T.D.T., Cozzolino D., Muhlhausler B., Box A., Able A.J. Antioxidant capacity and vitamin E in barley: Effect of genotype and storage. Food Chem. 2015;187(15):65­74.

19. Du B., Xu B. Oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) of β­glucans from different sources with various molecular weight. Bioact. Carbohydr. Diet. Fibre. 2014;3(1):11­16.

20. Dykes L., Rooney L.W. Phenolic compounds in cereal grains and their health benefits. Cereal Foods World. 2007;32:105­111.

21. Edelmann M., Kariluoto S., Nyström L., Piironen V. Folate in oats and its milling fractions. Food Chem. 2012;135(3):1938­1947.

22. Edelmann M., Kariluoto S., Nyström L., Piironen V. Folate in barley grain and fractions. J. Cereal Sci. 2013;58(1):37­44.

23. Emmons C.L., Peterson D.M., Paul G.L. Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. J. Agric. Food Chem. 1999; 47(12):4894­4898.

24. Fardet A. New hypotheses for the health­protective mechanisms of whole­grain cereals: what is beyond fibre? Nutr. Res. Rev. 2010;23: 65­134.

25. Fardet A., Rock E., Rémésy C. Is the in vitro antioxidant potential of whole­grain cereals and cereal products well reflected in vivo? J. Cereal Sci. 2008;48(2):258­276.

26. Fedina P.A., Yashin A.Ya., Chernousova N.I. Assay of antioxidants in plant products by the amperometric method. Khimiya rastitelnogo syr’ya = Chemistry of Plant Raw Material. 2010;2:91­97. (in Russian)

27. Finley J.W. Proposed criteria for assessing the efficacy of cancer reduction by plant foods enriched in carotenoids, glucosinolates, polyphenols and selenocompounds. Ann. Bot. 2005;95:1075­1096.

28. Fu­hua L., Ya Y., Xiao­lan Y., Shu­ying T., Jian M. Phenolic profiles and antioxidant activity of buckwheat (Fagopyrum esculentum Möench and Fagopyrum tartaricum L. Gaerth) hulls, brans and flours. J. Integr. Agric. 2013;12(9):1684­1693.

29. Gao C., Gao Z., Greenway F.L., Burton J.H., Johnson W.D., Keenan M.J., Enright F.M., Martin R.J., Chu Y.F., Zheng J. Oat consumption reduced intestinal fat deposition and improved health span in Caenorhabditis elegans model. Nutr. Res. 2015;35(6):834­843.

30. Gins M.S., Gins V.K. Antioxidant metabolomes of vegetable crop varieties bred at the All­Russia Research Institute of Vegetable Crop Breeding and Seed Industry. Ovoshchi Rossii = Vegetables of Russia. 2015;2(27):75­79. (in Russian)

31. Glagoleva A.Y., Shmakov N.V., Shoeva O.Y., Vasiliev G.V., Shatskaya N.V., Börner A., Afonnikov D.A., Khlestkina E.K. Metabolic pathways and genes identified by RNA­seq analysis of barley nearisogenic lines differing by allelic state of the Black lemma and pericarp (Blp) gene. BMC Plant Biol. 2017;7(Suppl. 1):182. DOI 10.1186/s12870­017­1124­1.

32. Gong L.X., Jin C., Wu L.J., Wu X.Q., Zhang Y. Tibetan hull­less Barley (Hordeum vulgare L.) as a potential source of antioxidants. Cereal Chem. 2012;89(6):290­295.

33. GOST R 52349­2005. Produkty pishchevye. Produkty pishchevye funktsionalnye. Terminy i opredeleniya [State Standard R 523492005. Food products. Functional food products. Terms and definitions]. Moscow, 2005. (in Russian)

34. Goufo P., Pereira J., Figueiredo N., Oliveira M.B., Carranca C., Rosa E.A.S., Trindade H. Effect of elevated carbon dioxide (CO2) on phenolic acids, flavonoids, tocopherols, tocotrienols, γ­oryzanol and antioxidant capacities of rice (Oryza sativa L.). J. Cereal Sci. 2014;59(1):15­24.

35. Guo W., Beta T. Phenolic acid composition and antioxidant potential of insoluble and soluble dietary fibre extracts derived from select whole­grain cereals. Food Res. Int. 2013;51(2):518­525.

36. Gupta C., Prakash D. Nutraceuticals for geriatrics. J. Tradit. Complement. Med. 2015;5:5­14.

37. Halliwell B. Biochemistry of oxidative stress. Biochem. Soc. Trans. 2007;35(5):1147­1150.

38. Hejtmánková K., Lachman J., Hejtmánková A., Pivec V., Janovská D. Tocols of selected spring wheat (Triticum aestivum L.), einkorn wheat (Triticum monococcum L.) and wild emmer (Triticum dicoccum Schuebl. [Schrank]) varieties. Food Chem. 2010;123(4):1267­1274.

39. Hidalgo A., Brandolini A. Nitrogen fertilisation effects on technological parameters and carotenoid, tocol and phenolic acid content of einkorn (Triticum monococcum L. subsp. monococcum): A two­year evaluation. J. Cereal Sci. 2017;73:18­24.

40. Hosseinian F.S., Mazza G. Triticale bran and straw: Potential new sources of phenolic acids, proanthocyanidins, and lignans. J. Funct. Foods. 2009;1(1):57­64.

41. Hurtado­Fernández E., Gómez­Romero M., Carrasco­Pancorbo A., Fernández­Gutiérrez A. Application and potential of capillary electroseparation methods to determine antioxidant phenolic compounds from plant food material. J. Pharm. Biomed. Anal. 2010;53(5): 1130­1160.

42. Hussain A., Larsson H., Olsson M.E., Kuktaite R., Grausgruber H., Johansson E. Is organically produced wheat a source of tocopherols and tocotrienols for health food? Food Chem. 2012;132(4):1789­1795.

43. Hüttner E.K., Arendt E.K. Recent advances in gluten­free baking and the current status of oats. Trends Food Sci. Technol. 2010;21(6): 303­312.

44. Inglett G.E., Chen D., Berhow M., Lee S. Antioxidant activity of commercial buckwheat flours and their free and bound phenolic compositions. Food Chem. 2011;125(3):923­929.

45. Khlestkina E.К., Usenko N.I., Gordeeva E.I., Stabrovskaya O.I., Sharfunova I.B., Otmakhova Y.S. Evaluation of wheat products with high flavonoid content: justification of importance of marker­assisted development and production of flavonoid­rich wheat cultivars. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(5):545­553. DOI 10.18699/VJ17.25­o. (in Russian)

46. Kovačova M., Malinova E. Ferulic and coumaric acids, total phenolic compounds and their correlation in selected oat genotypes. Chech J. Food Sci. 2007;25(6):325­332.

47. Lachman J., Hejtmánková K., Kotíková Z. Tocols and carotenoids of einkorn, emmer and spring wheat varieties: Selection for breeding and production. J. Cereal Sci. 2013;57(2):207­214.

48. Lee C., Han D., Kim B., Baek N., Baik B.K. Antioxidant and antihypertensive activity of anthocyanin­rich extracts from hulless pigmented barley cultivars. Int. J. Food Sci. Technol. 2013;48(5): 984­991.

49. Leonova S., Gnutikov A., Loskutov I., Blinova E., Gustafsson K.­E., Olsson O. Avenanthramide content exhibits large variability in wild and cultivated oats. J. Agric. Food Chem. 2018. (In press).

50. Li W., Friel J., Beta T. An evaluation of the antioxidant properties and aroma quality of infant cereals. Food Chem. 2010;121(4):1095­1102.

51. Li X.P., Li M.Y., Ling A.J., Hu X.Z., Ma Z., Liu L., Li Y.X. Effects of genotype and environment on avenanthramides and antioxidant activity of oats grown in northwestern China. J. Cereal Sci. 2017; 73:130­137.

52. Liu R.H. Whole grain phytochemicals and health. J. Cereal Sci. 2007; 46(3):207­219.

53. Liu Y. Beta­glucan effects on pasting properties and potential health benefits of flours from different oat lines. Graduate Theses and Dissertations. Paper 11303. Ames, Iowa: Iowa State University, 2010.

54. Liyana­Pathirana C.M., Shahidi F. The antioxidant potential of milling fractions from breadwheat and durum. J. Cereal Sci. 2007;45(3): 238­247.

55. Lopez­Martinez L.X., Oliart­Ros R.M., Valerio­Alfaro G., Lee C.H., Parkin K.L., Garcia H.S. Antioxidant activity, phenolic compounds and anthocyanins content of eighteen strains of Mexican maize. LWT Food Sci. Technol. 2009;42(6):1187­1192.

56. Loskutov I.G. Oves (Avena L.). Rasprostranenie, sistematika, evolyutsiya i selektsionnaya tsennost’ [Oat (Avena L.). Distribution, taxonomy, evolution, and breeding value]. Saint­Petersburg: VIR Publ., 2007. (in Russian)

57. Loskutov I.G., Polonskiy V.I. Content of β­glucans in oat grain as a promising direction of breeding for wholesome products and fodder. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2017;52(4):646­657. (in Russian)

58. Loskutov I.G., Rines H.W. Avena L. Ed. C. Kole. Wild Crop Relatives: Genomic and Breeding Resources. Cereals. Heidelberg, Berlin, New York: Springer­Verlag, 2011;1:109­184. DOI 10.1007/978­3­64214228­4_1.

59. Loskutov I.G., Shelenga T.V., Konarev A.V., Shavarda A.L., Blinova E.V., Dzubenko N.I. The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2016;20(5): 636­642. (in Russian)

60. Luthria D.L., Liu K. Localization of phenolic acids and antioxidant activity in sorghum kernels. J. Funct. Foods. 2013;5(4):1751­1760.

61. Manach C., Scalbert A., Morand C., Jimenez L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004;79(4):727­747.

62. Mareček V., Mikyška A., Hampel D., Čejka P., Neuwirthová J., Malachová A., Cerkal R. ABTS and DPPH methods as a tool for studying antioxidant capacity of spring barley and malt. J. Cereal Sci. 2017; 73(1):40­45.

63. Martínez­Tomé M., Murcia M.A., Frega N., Ruggieri S., Jiménez A.M., Roses F., Parras P. Evaluation of antioxidant capacity of cereal brans. J. Agric. Food Chem. 2004;52(15):4690­4699.

64. Martinia D., Taddei F., Ciccoritti R., Pasquini M., Nicoletti I., Corradini D., D’Egidio M.G. Variation of total antioxidant activity and of phenolic acid, total phenolics and yellow coloured pigments in durum wheat (Triticum turgidum L. var. durum) as a function of genotype, crop year and growing area. J. Cereal Sci. 2015;65:175­185.

65. Masisi K., Beta T., Moghadasian M.H. Antioxidant properties of diverse cereal grains: A review on in vitro and in vivo studies. Food Chem. 2016;196:90­97.

66. Menga V., Fares C., Troccoli A., Cattivelli L., Baiano A. Effects of genotype, location and baking on the phenolic content and some antioxidant properties of cereal species. Int. J. Food Sci. Technol. 2010;45(1):7­16.

67. Min B., Gu L., McClung A.M., Bergman C.J., Chen M.H. Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (Oryza sativa L.) of different bran colours. Food Chem. 2012; 133(3):715­722.

68. Mosawy S. Effect of the flavonol quercetin on human platelet function: A review. Food Public Health. 2015;5(1):1­9.

69. Moure A., Cruz J.M., Franco D., Domı́nguez J.M., Sineiro J., Domı́nguez H., Núñez M.J., Parajó J.C. Natural antioxidants from residual sources. Food Chem. 2001;72(2):145­171.

70. Ndolo V.U., Beta T. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem. 2013; 139(1­4):663­671.

71. Ndolo V.U., Beta T., Fulcher R.G. Ferulic acid fluorescence intensity profiles and concentration measured by HPLC in pigmented and non­pigmented cereals. Food Res. Int. 2013;52(1):109­118.

72. Patel S. Cereal bran fortified­functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. J. Funct. Foods. 2015;14:255­269.

73. Peh H.Y., Tan W.S.D., Liao W., Wong W.S.F. Vitamin E therapy beyond cancer: Tocopherol versus tocotrienol. Pharmacol. Ther. 2016; 162(1):152­169.

74. Polonskiy V.I., Gerasimov S.A. Sposob otsenki yachmenya na soderzhanie belka v zerne [Method for assessment of protein content in barley grain]. Patent RF, no. 2394223, 2010. (in Russian)

75. Polonskiy V.I., Loskutov I.G., Sumina A.V. The Express method of oats genotypes evaluation on beta­glucan content. The 10th International Oat Conference: Innovation for Food and Health. (Abstracts of oral and poster presentation. “OATS 2016” N.I. Vavilov All­Russian Institute of Plant Genetic Resources (VIR). St­Petersburg, 2016;78.

76. Polonskiy V.I., Sumina A.V. Sposob otsenki kachestva zerna genotipov yachmenya pivovarennogo napravleniya [Method for assessing the quality of grains of barley genotypes designed for brewing]. Patent RF, no. 2468568, 2012. (in Russian)

77. Polonskiy V.I., Sumina A.V. Sposob otsenki plenchatosti zerna genotipov yachmenya [Method for assessing the husk content of grain of barley genotypes]. Patent RF, no. 2495563, 2013. (in Russian)

78. Polonskiy V.I., Sumina A.V. Nondestructive methods for evaluating quality of grain in barley and oat genotypes. Proc. 32nd Nordic Cereal Congress. Espoo, Finland. 2015;54.

79. Polonskiy V.I., Sumina A.V., Pavlova E.V., Shaldaeva T.M. Variation of total antioxidants content in oat and barley grain grown in the conditions of intermountain hollows. Uspekhi sovremennogo estestvoznaniya = Advances in Current Natural Sciences. 2016а;8:114­119. (in Russian)

80. Polonskiy V.I., Sumina A.V., Shaldaeva T.M., Strupan E.A. Assessment of antioxidant content in barley and oat grain on the basis of its physical parameters. Vestnik KrasGAU = Bulletin of the Krasnoyarsk State Agrarian University. 2016b;8:59­64. (in Russian)

81. Pradeep P.M., Sreerama Y.N. Impact of processing on the phenolic profiles of small millets: Evaluation of their antioxidant and enzyme inhibitory properties associated with hyperglycemia. Food Chem. 2015;169(2):455­463.

82. Premakumara G.A.S., Abeysekera W.K.S.M., Ratnasooriya W.D., Chandrasekharan N.V., Bentota A.P. Antioxidant, anti­amylase and anti­glycation potential of brans of some Sri Lankan traditional and improved rice (Oryza sativa L.) varieties. J. Cereal Sci. 2013;58(3): 451­456.

83. Ragaee S., Abdel­Aal E.S.M., Noaman M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006;98(1):32­38.

84. Rosa N.N., Barron C., Gaiani C., Dufour C., Micard V. Ultra­fine grinding increases the antioxidant capacity of wheat bran. J. Cereal Sci. 2013:5784­5790.

85. Sedej I., Sakač M., Mandić A., Mišan A., Tumbas V., Hadnađev M. Assessment of antioxidant activity and rheological properties of wheat and buckwheat milling fractions. J. Cereal Sci. 2011;54(3):347­353.

86. Sen C.K., Khanna S., Roy S. Tocotrienols in health and disease: The other half of the natural vitamin E family. Mol. Aspects Med. 2007; 28(5­6):692­728.

87. Shah A., Masoodi F.A., Gani A., Ashwar B.A. Newly released oat varieties of himalayan region – Techno­functional, rheological, and nutraceutical properties of flour. LWT – Food Sci. Technol. 2016; 70(7):111­118. DOI 10.1016/j.lwt.2016.02.033.

88. Shahidi F., Ambigaipalan P. Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects – A review. J. Funct. Foods. 2015;18:820­897.

89. Shahidi F., Chandrasekara A. Millet grain phenolics and their role in disease risk reduction and health promotion: A review. J. Funct. Foods. 2013;5(2):570­581. DOI 10.1016/j.jff.2013.02.004.

90. Shao Y., Bao J. Polyphenols in whole rice grain: Genetic diversity and health benefits. Food Chem. 2015;180(8):86­97.

91. Shebis Y., Iluz D., Kinel­Tahan Y., Dubinsky Z., Yehoshua Y. Natural antioxidants: function and sources. Food Nutr. Sci. 2013;4:643­649.

92. Shewry P.R., Hey S. Do “ancient” wheat species differ from modern bread wheat in their contents of bioactive components? J. Cereal Sci. 2015;65:236­243. DOI 10.1016/j.jcs.2015.07.014.

93. Shewry P.R., Piironen V., Lampi A.M., Nyström L., Li L., Rakszegi M., Fraś A., Boros D., Gebruers K., Courtin C.M., Delcour J.A., Andersson A.A.M., Dimberg L., Bedő Z., Ward J.L. Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen. J. Agric. Food Chem. 2008;56(21):9777­9784.

94. Sontag­Strohm T., Lehtinen P., Kaukovirta­Norja A. Oat products and their current status in the celiac diet. Eds. E.K. Arendt, F. Dal Bello. Gluten­Free Cereal Products and Beverages. Burlington, MA.: Academic Press, 2008;191­202.

95. Sovrani V., Blandino M., Scarpino V., Reyneri A., Coпsson J.D., Travaglia F., Locatelli M., Bordiga M., Montella R., Arlorio M. Bioactive compound content, antioxidant activity, deoxynivalenol and heavy metal contamination of pearled wheat fractions. Food Chem. 2012; 135:39­46.

96. Suchecka D., Harasym J.P., Wilczak J., Gajewska M., Oczkow ski M., Gudej S., Błaszczyk K., Kamola D., Filip R., Gromadzka­Ostrowska J. Antioxidative and anti­inflammatory effects of high beta­glucan concentration purified aqueous extract from oat in experimental model of LPS­induced chronic enteritis. J. Funct. Foods. 2015; 14(4):244­254.

97. Taylor J.R.N., Belton P.S., Beta T., Duodu K.G. Increasing the utilisation of sorghum, millets and pseudocereals: Developments in the science of their phenolic phytochemicals, biofortification and protein functionality. J. Cereal Sci. 2014;59(3):257­275.

98. Tucakovic L., Colson N., Singh I. Relationship between common dietary polyphenols and obesity­induced inflammation. Food Public Health. 2015;5(3):84­91. DOI 10.5923/j.fph.20150503.04.

99. Tufan A.N., Çelik S.E., Özyürek M., Güçlü K., Apak R. Direct measurement of total antioxidant capacity of cereals: QUENCHERCUPRAC method. Talanta. 2013;108(4):136­142. DOI 10.1016/j.talanta.2013.02.061.

100. Vargach U.I., Loskutov I.G., Mertvischeva M.E. Antioxidant activity of oat grains under conditions of the nonchernozem belt in Russia. Materialy dokladov Godichnogo sobraniya OFR, nauchnoy konferentsii i shkoly dlya molodykh uchenykh: ‘‘Eksperimental’naya biologiya rasteniy: fundamental’nye i prikladnye aspekty’’. 18–24 sentyabrya 2017 goda [Proceedings of the Annual Meeting of the Society for Plant Physiologists, scientific conference, and young scientists’ school “Experimental Plant Biology: Fundamental and Applied Aspects”, Sep. 18–24, 2017]. Krym, Sudak; 124. (in Russian)

101. Wang Y., Frei M. Stressed food – The impact of abiotic environmental stresses on crop quality. Agric. Ecosyst. Environ. 2011;141:271­286. DOI 10.1016/j.agee.2011.03.017.

102. Yashin A.Ya. Injection­flow system with an amperometric detector for selective assay of antioxidants in food products and beverages. Rossiyskiy khimicheskiy zhurnal = Russian Chemical Journal. 2008;52(2):130­135. (in Russian)

103. Yashin A.Ya., Yashin Ya.N., Fedina P.A., Chernousova N.I. Assay of natural antioxidants in food cereals and legumes. Analitika = Analytics. 2012;1:32­36. (in Russian)

104. Yoshida A., Sonoda K., Nogata Y., Nagamine T., Sato M., Oki T., Hashimoto S., Ohta H. Determination of free and bound phenolic acids, and evaluation of antioxidant activities and total polyphenolic contents in selected pearled barley. Food Sci. Technol. Res. 2010; 16(3):215­224.

105. Zduńczyk Z., Flis M., Zieliński H., Wróblewska M., Antoszkiewicz Z., Juśkiewicz J. In vitro antioxidant activities of barley, husked oat, naked oat, triticale, and buckwheat wastes and their influence on the growth and biomarkers of antioxidant status in rats. J. Agric. Food Chem. 2006;54(12):4168­4175.

106. Zhao Z., Moghadasian M.H. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chem. 2008;109(4):691­702.

107. Zhu Y., Li T., Fu X., Abbasi A.M., Zheng B., Liu R.H. Phenolics content, antioxidant and antiproliferative activities of dehulled highland barley (Hordeum vulgare L.). J. Funct. Foods. 2015;19:439­450.

108. Zieliński H., Ceglińska A., Michalska A. Antioxidant contents and properties as quality indices of rye cultivars. Food Chem. 2007; 104(3):980­988.

109. Zieliński H., Kozłowska H. Antioxidant activity and total phenolics in selected cereal grains and their different morphological fractions. J. Agric. Food Chem. 2000;48(6):2008­2016.

110. Žilić S., Serpen A., Akıllıoğlu G., Janković M., Gökmen V. Distributions of phenolic compounds, yellow pigments and oxidative enzymes in wheat grains and their relation to antioxidant capacity of bran and debranned flour. J. Cereal Sci. 2012;56(3):652­658.

111. Žilić S., Šukalović V.H.T., Dodig D., Maksimović V., Maksimović M., Basić Z. Antioxidant activity of small grain cereals caused by phenolics and lipid soluble antioxidants. J. Cereal Sci. 2011;54(3): 417­424.


Дополнительные файлы

Просмотров: 114

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2500-0462 (Print)
ISSN 2500-3259 (Online)