The role of SAGA in the transcription and export of mRNA
https://doi.org/10.18699/VJ19.478
Abstract
About the Authors
E. N. NabirochkinaRussian Federation
Moscow.
M. M. Kurshakova
Russian Federation
Moscow.
S. G. Georgieva
Russian Federation
Moscow.
D. V. Kopytova
Russian Federation
Moscow.
References
1. Baillat D., Gardini A., Cesaroni M., Shiekhattar R. Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol. Cell. Biol. 2012;32(22):4642-4650. DOI 10.1128/mcb. 00906-12.
2. Daniel J.A., Torok M.S., Sun Z.W., Schieltz D., Allis C.D., Yates J.R., Grant P.A. Deubiquitination of histone H2B by a yeast acetyltrans- ferase complex regulates transcription. J. Biol. Chem. 2004;279(3): 1867-1871. DOI 10.1074/jbc.C300494200.
3. Georgieva S., Nabirochkina E., Dilworth F.J., Eickhoff H., Becker P., Tora L., Georgiev P., Soldatov A. The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activa-tion on chromatin templates. Mol. Cell. Biol. 2001;21(15):5223- 5231. DOI 10.1128/mcb.21.15.5223-5231.2001.
4. Gurskiy D., Orlova A., Vorobyeva N., Nabirochkina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res. 2012;40(21): 10689-10700. DOI 10.1093/nar/gks857.
5. Henry K.W., Wyce A., Lo W.S., Duggan L.J., Emre N.C., Kao C.F., Pillus L., Shilatifard A., Osley M.A., Berger S.L. Transcriptional activation via sequential histone H2B ubiquitylation and deubiqui- tylation, mediated by SAGA-associated Ubp8. Genes Dev. 2003; 17(21):2648-2663. DOI 10.1101/gad.1144003.
6. Kohler A., Pascual-Garcia P., Llopis A., Zapater M., Posas F., Hurt E., Rodriguez-Navarro S. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinyla- tion through its interaction with Ubp8 and Sgf11. Mol. Biol. Cell. 2006;17(10):4228-4236. DOI 10.1091/mbc.e06-02-0098.
7. Kopytova D.V., Orlova A.V., Krasnov A.N., Gurskiy D.Y., Nikolen- ko J.V., Nabirochkina E.N., Shidlovskii Y.V., Georgieva S.G. Mul¬tifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 2010; 24(1):86-96. DOI 10.1101/gad.550010.
8. Kurshakova M.M., Krasnov A.N., Kopytova D.V., Shidlovskii Y.V., Nikolenko J.V., Nabirochkina E.N., Spehner D., Schultz P., Tora L., Georgieva S.G. SAGA and a novel Drosophila export complex an¬chor efficient transcription and mRNA export to NPC. EMBO J. 2007;26(24):4956-4965. DOI 10.1038/sj.emboj.7601901.
9. Lebedeva L.A., Nabirochkina E.N., Kurshakova M.M., Robert F., Krasnov A.N., Evgen’ev M.B., Kadonaga J.T., Georgieva S.G., Tora L. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activa¬tion. Proc. Natl. Acad. Sci. USA. 2005;102(50):18087-18092. DOI 10.1073/pnas.0509063102.
10. Lee K.K., Florens L., Swanson S.K., Washburn M.P., Workman J.L. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell. Biol. 2005; 25(3):1173-1182. DOI 10.1128/mcb.25.3.1173-1182.2005.
11. Li B., Carey M., Workman J.L. The role of chromatin during transcrip¬tion. Cell. 2007;128(4):707-719. DOI 10.1016/j.cell.2007.01.015.
12. Li X., Seidel C.W., Szerszen L.T., Lange J.J., Workman J.L., Ab- mayr S.M. Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in Drosophila gene expression and de-velopment. Genes Dev. 2017;31(15):1588-1600. DOI 10.1101/gad. 300988.117.
13. Martinez E. Multi-protein complexes in eukaryotic gene transcription. Plant Mol. Biol. 2002;50(6):925-947.
14. Nagy Z., Tora L. Distinct GCN5/PCAF-containing complexes func¬tion as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26(37):5341-5357. DOI 10.1038/sj.onc.1210604.
15. Nakamura Y., Tagawa K., Oka T., Sasabe T., Ito H., Shiwaku H., La Spada A.R., Okazawa H. Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Hum. Mol. Genet. 2012; 21(5):1099-1110. DOI 10.1093/hmg/ddr539.
16. Popova V.V., Orlova A.V., Kurshakova M.M., Nikolenko J.V., Nabi- rochkina E.N., Georgieva S.G., Kopytova D.V. The role of SAGA coactivator complex in snRNA transcription. Cell Cycle. 2018; 17(15):1859-1870. DOI 10.1080/15384101.2018.1489175.
17. Powell D.W., Weaver C.M., Jennings J.L., McAfee K.J., He Y., Weil P.A., Link A.J. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol. Cell. Biol. 2004;24(16):7249-7259. DOI 10.1128/mcb.24.16.7249-7259.2004.
18. Rodriguez-Navarro S., Fischer T., Luo M.J., Antunez O., Brettschnei- der S., Lechner J., Perez-Ortin J.E., Reed R., Hurt E. Sus1, a func-tional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell. 2004;116(1): 75-86.
19. Weake V.M., Lee K.K., Guelman S., Lin C.H., Seidel C., Abmayr S.M., Workman J.L. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual sys¬tem. EMBO J. 2008;27(2):394-405. DOI 10.1038/sj.emboj.7601966.
20. Weake V.M., Swanson S.K., Mushegian A., Florens L., Washburn M.P., Abmayr S.M., Workman J.L. A novel histone fold domain-contain¬ing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. Genes Dev. 2009;23(24):2818- 2823. DOI 10.1101/gad.1846409.
21. Wu P.Y., Ruhlmann C., Winston F., Schultz P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell. 2004;15(2):199-208. DOI 10.1016/j.molcel.2004.06.005.
22. Zhao Y., Lang G., Ito S., Bonnet J., Metzger E., Sawatsubashi S., Su-zuki E., Le Guezennec X., Stunnenberg H.G., Krasnov A., Geor-gieva S.G., Schule R., Takeyama K., Kato S., Tora L., Devys D. A TFTC/STAGA module mediates histone H2A and H2B deubiq- uitination, coactivates nuclear receptors, and counteracts hetero-chromatin silencing. Mol. Cell. 2008;29(1):92-101. DOI 10.1016/j. molcel.2007.12.011