Preview

Vavilov Journal of Genetics and Breeding

Advanced search

The role of SAGA in the transcription and export of mRNA

https://doi.org/10.18699/VJ19.478

Abstract

SAGA/TFTC, which is a histone acetyltransferase complex, plays an important role in the regulation of transcription. We have identified that the metazoan TFTC/STAGA complexes had histone H2A and H2B deubiquitinase activity that is carried out by a DUBm (deubiquitination module). We studied the DUBm of SAGA in Drosophila melanogaster and identified Drosophila homologs of yeast DUBm components. Two subunits of DUBm (Sus1/ENY2 and Sgf11) were shown to have functions separate from DUBm function. Thus, Sus1/ENY2 was shown to be present in several different complexes. Sgf11 was found to be associated with the cap-binding complex (CBC) and recruited onto growing messenger ribonucleic acid (mRNA). Also, we have shown that Sgf11 interacted with the TREX-2/AMEX mRNA export complex and was essential for mRNA export from the nucleus. Immunostaining of the polytene chromosomes of Drosophila larvae revealed that Sgf11 is present at the sites of localization of snRNA genes. It was also found in immunostaining experiments that dPbp45, the subunit of the PBP complex, the key player in the snRNA transcription process, is associated not only with the snRNA gene localization sites, but with other sites of active transcription by PolII. We also revealed that Sgf11 was present at many active transcription sites in interbands and puffs on polytene chromosomes, Sgf11 was localized at all Brf1 (the component of the RNA polymerase III basal transcription complex) sites. We concluded that SAGA coactivated transcription of both the PolII and PolIII-dependent snRNA genes.

About the Authors

E. N. Nabirochkina
Institute of Gene Biology, RAS.
Russian Federation
Moscow.


M. M. Kurshakova
Institute of Gene Biology, RAS.
Russian Federation
Moscow.


S. G. Georgieva
Institute of Gene Biology, RAS.
Russian Federation
Moscow.


D. V. Kopytova
Institute of Gene Biology, RAS.
Russian Federation
Moscow.


References

1. Baillat D., Gardini A., Cesaroni M., Shiekhattar R. Requirement for SNAPC1 in transcriptional responsiveness to diverse extracellular signals. Mol. Cell. Biol. 2012;32(22):4642-4650. DOI 10.1128/mcb. 00906-12.

2. Daniel J.A., Torok M.S., Sun Z.W., Schieltz D., Allis C.D., Yates J.R., Grant P.A. Deubiquitination of histone H2B by a yeast acetyltrans- ferase complex regulates transcription. J. Biol. Chem. 2004;279(3): 1867-1871. DOI 10.1074/jbc.C300494200.

3. Georgieva S., Nabirochkina E., Dilworth F.J., Eickhoff H., Becker P., Tora L., Georgiev P., Soldatov A. The novel transcription factor e(y)2 interacts with TAF(II)40 and potentiates transcription activa-tion on chromatin templates. Mol. Cell. Biol. 2001;21(15):5223- 5231. DOI 10.1128/mcb.21.15.5223-5231.2001.

4. Gurskiy D., Orlova A., Vorobyeva N., Nabirochkina E., Krasnov A., Shidlovskii Y., Georgieva S., Kopytova D. The DUBm subunit Sgf11 is required for mRNA export and interacts with Cbp80 in Drosophila. Nucleic Acids Res. 2012;40(21): 10689-10700. DOI 10.1093/nar/gks857.

5. Henry K.W., Wyce A., Lo W.S., Duggan L.J., Emre N.C., Kao C.F., Pillus L., Shilatifard A., Osley M.A., Berger S.L. Transcriptional activation via sequential histone H2B ubiquitylation and deubiqui- tylation, mediated by SAGA-associated Ubp8. Genes Dev. 2003; 17(21):2648-2663. DOI 10.1101/gad.1144003.

6. Kohler A., Pascual-Garcia P., Llopis A., Zapater M., Posas F., Hurt E., Rodriguez-Navarro S. The mRNA export factor Sus1 is involved in Spt/Ada/Gcn5 acetyltransferase-mediated H2B deubiquitinyla- tion through its interaction with Ubp8 and Sgf11. Mol. Biol. Cell. 2006;17(10):4228-4236. DOI 10.1091/mbc.e06-02-0098.

7. Kopytova D.V., Orlova A.V., Krasnov A.N., Gurskiy D.Y., Nikolen- ko J.V., Nabirochkina E.N., Shidlovskii Y.V., Georgieva S.G. Mul¬tifunctional factor ENY2 is associated with the THO complex and promotes its recruitment onto nascent mRNA. Genes Dev. 2010; 24(1):86-96. DOI 10.1101/gad.550010.

8. Kurshakova M.M., Krasnov A.N., Kopytova D.V., Shidlovskii Y.V., Nikolenko J.V., Nabirochkina E.N., Spehner D., Schultz P., Tora L., Georgieva S.G. SAGA and a novel Drosophila export complex an¬chor efficient transcription and mRNA export to NPC. EMBO J. 2007;26(24):4956-4965. DOI 10.1038/sj.emboj.7601901.

9. Lebedeva L.A., Nabirochkina E.N., Kurshakova M.M., Robert F., Krasnov A.N., Evgen’ev M.B., Kadonaga J.T., Georgieva S.G., Tora L. Occupancy of the Drosophila hsp70 promoter by a subset of basal transcription factors diminishes upon transcriptional activa¬tion. Proc. Natl. Acad. Sci. USA. 2005;102(50):18087-18092. DOI 10.1073/pnas.0509063102.

10. Lee K.K., Florens L., Swanson S.K., Washburn M.P., Workman J.L. The deubiquitylation activity of Ubp8 is dependent upon Sgf11 and its association with the SAGA complex. Mol. Cell. Biol. 2005; 25(3):1173-1182. DOI 10.1128/mcb.25.3.1173-1182.2005.

11. Li B., Carey M., Workman J.L. The role of chromatin during transcrip¬tion. Cell. 2007;128(4):707-719. DOI 10.1016/j.cell.2007.01.015.

12. Li X., Seidel C.W., Szerszen L.T., Lange J.J., Workman J.L., Ab- mayr S.M. Enzymatic modules of the SAGA chromatin-modifying complex play distinct roles in Drosophila gene expression and de-velopment. Genes Dev. 2017;31(15):1588-1600. DOI 10.1101/gad. 300988.117.

13. Martinez E. Multi-protein complexes in eukaryotic gene transcription. Plant Mol. Biol. 2002;50(6):925-947.

14. Nagy Z., Tora L. Distinct GCN5/PCAF-containing complexes func¬tion as co-activators and are involved in transcription factor and global histone acetylation. Oncogene. 2007;26(37):5341-5357. DOI 10.1038/sj.onc.1210604.

15. Nakamura Y., Tagawa K., Oka T., Sasabe T., Ito H., Shiwaku H., La Spada A.R., Okazawa H. Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. Hum. Mol. Genet. 2012; 21(5):1099-1110. DOI 10.1093/hmg/ddr539.

16. Popova V.V., Orlova A.V., Kurshakova M.M., Nikolenko J.V., Nabi- rochkina E.N., Georgieva S.G., Kopytova D.V. The role of SAGA coactivator complex in snRNA transcription. Cell Cycle. 2018; 17(15):1859-1870. DOI 10.1080/15384101.2018.1489175.

17. Powell D.W., Weaver C.M., Jennings J.L., McAfee K.J., He Y., Weil P.A., Link A.J. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol. Cell. Biol. 2004;24(16):7249-7259. DOI 10.1128/mcb.24.16.7249-7259.2004.

18. Rodriguez-Navarro S., Fischer T., Luo M.J., Antunez O., Brettschnei- der S., Lechner J., Perez-Ortin J.E., Reed R., Hurt E. Sus1, a func-tional component of the SAGA histone acetylase complex and the nuclear pore-associated mRNA export machinery. Cell. 2004;116(1): 75-86.

19. Weake V.M., Lee K.K., Guelman S., Lin C.H., Seidel C., Abmayr S.M., Workman J.L. SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual sys¬tem. EMBO J. 2008;27(2):394-405. DOI 10.1038/sj.emboj.7601966.

20. Weake V.M., Swanson S.K., Mushegian A., Florens L., Washburn M.P., Abmayr S.M., Workman J.L. A novel histone fold domain-contain¬ing protein that replaces TAF6 in Drosophila SAGA is required for SAGA-dependent gene expression. Genes Dev. 2009;23(24):2818- 2823. DOI 10.1101/gad.1846409.

21. Wu P.Y., Ruhlmann C., Winston F., Schultz P. Molecular architecture of the S. cerevisiae SAGA complex. Mol. Cell. 2004;15(2):199-208. DOI 10.1016/j.molcel.2004.06.005.

22. Zhao Y., Lang G., Ito S., Bonnet J., Metzger E., Sawatsubashi S., Su-zuki E., Le Guezennec X., Stunnenberg H.G., Krasnov A., Geor-gieva S.G., Schule R., Takeyama K., Kato S., Tora L., Devys D. A TFTC/STAGA module mediates histone H2A and H2B deubiq- uitination, coactivates nuclear receptors, and counteracts hetero-chromatin silencing. Mol. Cell. 2008;29(1):92-101. DOI 10.1016/j. molcel.2007.12.011


Review

Views: 710


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)