Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Мutants of inflorescence development in alfalfa (Medicago sativa L.)

https://doi.org/10.18699/VJ19.543

Abstract

Alfalfa (Medicago sativa L., Medicago varia Mart., Medicago falcata L.) is a perennial leguminous plant  well-known as the queen of forages  cultivated  all over the world. The general  biology and morphology of the plant  has been described in detail. The typical inflorescence of the plant is raceme. Due to the multistep inbreeding process  in this cross-pollinated species, different mutant forms have been  found  in inbred  progenies. They include long racemes, panicle-like racemes  (with fertile and sterile flowers), complicated branched racemes,  and fasciated  inflorescences. The fasciation trait was discovered first in long racemes  and then it was introduced into every mutant inflorescence type by hand  pollination. By means  of pair hybridization,  transitional  forms of some mutants were isolated and the new mutant forms combined two or three  mutant genes.  New gene  names  are proposed for new duplex  and triplex mutant types: lpfas, pi1lpfas, brilpfas. Medicago truncatula is a conventional model species for legume  genome research. M. truncatula and alfalfa share highly conserved nucleotide sequences and exhibit nearly perfect  synteny between the two genomes. The knowledge about inflorescence development in model M. truncatula plants adds to understanding the genetic nature of mutant inflorescence development in alfalfa; therefore, we compiled the information on the genetic regulation of inflorescence development in M. truncatula. The M. truncatula mutant mtpim has a complicated inflorescence structure resembling panicle-like inflorescence in alfalfa. Presently, it is known that the inflorescence architecture in M. truncatula is controlled by spatiotemporal expression  of MtTFL1, MtFULc, MtAP1, and SGL1 through reciprocal repression.  Some mutants isolated in M. truncatula resemble alfalfa mutants in phenotype. The mutant generated by retrotransposon insertion mutagenesis and named sgl1-1 has a cauliflower-like phenotype looking just like the cauliflower mutant in alfalfa. New data concerning genes regulating inflorescence development in model legumes approach us to understanding the phenomenon of inflorescence mutations in alfalfa. The information of inflorescence mutants in nonmodel crops may augment our knowledge of plant development and help crop improvement.

About the Authors

N. I. Dzyubenko
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg.



E. A. Dzyubenko
Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)
Russian Federation

St. Petersburg.



References

1. Bayly J.L., Craig J.L. A morphological study of the X­ray induced cau­ liflower­head and single­leaf mutation in Medicago sativa L. Can. J. Genet. Cytol. 1962;4:386­397.

2. Benloch R., Berbel A., Latifeh A., Gohari G., Millian T., Madueno F. Genetic control of inflorescence architecture in legumes. Front. Plant Sci. 2015;6:543. DOI 10.3389/fpls.2015.00543.

3. Benlloch R., d’Erfurth I., Ferrandiz C., Cosson V., Beltran J.P., Ca­ nas L.A., Kondorosi A., Madueno F., Ratet P. Isolation of mtpim proves Tnt1 a useful reverse genetics tool in Medicago truncatula and uncovers new aspects of AP1­like functions in legumes. Plant Physiol. 2006;142(3):972­983. DOI 10.1104/pp.106.083543.

4. Berbel A., Ferrandiz C., Hecht V., Dalmais M., Lund O.S., Suss­ milch F.C., Scott A.T., Bendahmane A., Ellis T.H.N., Beltran J., Weller J., Madueno F. VEGETATIVE1 is essesential for development of the compound inflorescence in pea. Nat. Commun. 2012;3:797. DOI 10.1038/ncomms1801.

5. Berbel A., Navarro C., Ferraniz C., Canas L.A., Madueno F., Bel­ tran J.P. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1­like genes controlling both floral meristem and floral organ identity in different plant species. Plant J. 2001; 25(4):441­451.

6. Blázquez M., Ferrándiz C., Madueño F., Parcy F. How floral meri­ stems are built. Plant Mol. Biol. 2006;60(6):855­870. DOI 10.1007/ s11103­006­0013­z.

7. Bodzon Z. Inheritance of spontaneous long peduncle mutation in lucerne (Medicago sativa L.). Plant Breed. Seed Sci. 1998;42(1): 3­9.

8. Bodzon Z. Correlations and heritability of the characters determining the seed yield of the panicle inflorescence forms of alfalfa (Medicago × varia T. Martyn). Plant Breed. Seed Sci. 2016;74:19­26. DOI 10.1515/plass–2016­0011.

9. Cheng X., Li G., Tang Y., Wen J. Dissection of genetic regulation of compound inflorescence development in Medicago truncatula. Development. 2018;145:1­13. DOI 10.1242/dev.158766.

10. Choi H.­K., Kim D., Uhm T., Limpens E., Lim H., Mun J.­H., Kalo P., Penmetsa R.V., Seres A., Kulikova O., Roe B., Bisseling T., Kiss G., Cook D. A sequence­based genetic map of Medicago truncatula and comparison of marker colinearity with M. sativa. Genetics. 2004; 166:1463­1502. DOI 10.1534/genetics.166.3.1463.

11. Coen E.S., Romero J.M., Doyle S., Elliott R., Murphy G., Carpenter R. Floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell. 1990;63(6):1311­1322.

12. Dalmadi Á., Kaló P., Jakab J., Saskoi A., Petrovich T., Deak G., Kiss G. Dwarf plants of diploid Medicago sativa carry a mutation in the gibberellin 3­β­hydroxylase gene. Plant Cell Rep. 2008;27:1271. DOI 10.1007/s00299­008­0546­5.

13. Dudley J.W., Wilsie C.P. Inheritance of branched inflorescence and vestigial flower in alfalfa, Medicago sativa L. Agron. J. 1956;48(2): 47­50.

14. Dudley J.W., Wilsie C.P. Inheritance of branched inflorescence and vestigial flower in alfalfa. Agron. J. 1957;49(5­6):320­323.

15. Dzyubenko E.A. Ovule fertility of alfalfa mutants. In: XI International Symposium “Embryology and Seed Reproduction”: Abstracts. Leningrad, 1990;39.

16. Dzyubenko N.I., Dzyubenko E.A. Expression of mutant genes on the traits of inflorescences structure and setting in inbred populations of alfalfa. In: Novosibirsk, Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences, Proceedings of the Second Meeting “Isogenic Lines and Genetic Collections”. 23–25 March. 1993;175­177. (in Russian)

17. Dzyubenko N.I., Dzyubenko E.A. Genetics of alfalfa. In: Genetics of Cultivated Plants. Saint­Petersburg: VIR, 1998;161­199. (in Russian)

18. Dzyubenko N.I., Dzyubenko E.A. Genetic collection of cultivated alfalfa on the traits of structure and setting of inflorescences and flowers. In: Proc. of International Conference “Genetics and Biotechnology on the Border of Millenniums”, Minsk 25–29 October. 2010;46. (in Russian)

19. Dzyubenko N.I., Dzyubenko E.A. Intraspecies polymorphism of inflorescences in cultivated alfalfa. In: Proc. of International Memorial Conference after E.N. Sinskaya, Saint­Petersburg, 9–11 December. 2009;175­178. (in Russian)

20. Dzyubenko N.I., Dzyubenko E.A. Lucerne (Medicago sativa L.) population composition based on inflorescence length. Research Bulletin of the All­Russian N.I. Vavilov Institute of Plant Industry. 1991; 211:49­53. (in Russian)

21. Dzyubenko N.I., Dzyubenko E.A. Polymorhizm in lucerne populations by inflorescence structure. Research Bulletin of the All­Russian N.I. Vavilov Institute of Plant Industry. 1992;218:71­75. (in Russian)

22. Dzyubenko N.I., Dzyubenko E.A. The genetics of diploid and tetraploid forms of alfalfa. In: Genetic Collections of Plants. Issue 2. Novosibirsk: Institute of Cytology and Genetics, Siberian Division of the Russian Academy of Sciences. 1994;87­124. (in Russian)

23. Dzyubenko N.I., Dzyubenko E.A. Approximation of genes action determining deviations in meristem development of Arabidopsis thaliana to alfalfa mutants. In: Proc. of All­Russian Conference “50 years of VOGIS: successes and prospects”. Moscow. 8–10 November 2016. www.vogis.org. 2016;145. (in Russian)

24. Fedorov Al.A. Teratology and Forming Process in Plants. M.; L.: Academy of Science USSR Publ., 1958. (in Russian)

25. Foucher F., Morin J., Courtiade J., Cadioux S., Ellis N., Banfield M.J., Rameau C. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell. 2003;15(11):2742­2754. DOI 10.1105/tpc.015701.

26. Grønlund M., Constantin G., Piednoir E., Kovacev J., Johansen I.E., Lund O.S. Virus­induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res. 2008;135:345­349. DOI 10.1016/j. virusres.2008.04.005.

27. Hofer J., Turner L., Hellens R., Ambrose M., Matthews P., Michael A., Ellis N. UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr. Biol. 1997;7:581­587.

28. Kaló P., Endre G., Zimányi L., Csaná di G., Kiss G.B. Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor. Appl. Genet. 2000;100:641­657. DOI 10.1007/s001220051335.

29. Kaló P., Seres A., Taylor S.A., Jakab J., Kevei Z., Kereszt A., Endre G., Ellis T.H.N., Kiss G.B. Comparative mapping between Medicago sativa and Pisum sativum. Mol. Genet. Genom. 2004;272:235­246. DOI 10.1007/s00438­004­1055­z.

30. Kempin S.A., Savidge B., Yanofsky M.F. Molecular basis of the cauliflower phenotype in Arabidopsis. Science. 1995;267:522­525. DOI 10.1126/science.7824951.

31. Kinoshita T., Suginobu K. Inheritance of cauliflower character in alfalfa. Can. J. Genet. Cytol. 1982;24:485­492.

32. Kuperman F.M. Morhophisiology of Plants. M.: Vysshaya Shkola Publ., 1984. (in Russian)

33. Mariani A., Ceccarelli S., Lorenzetti F. Inheritance of a spontaneous “cauliflower” mutant in Medicago sativa L. Zeitschrift fur Pflanzen­ richtung (in Deutch) = J. Plant Breeding. 1976;77(1):16­22.

34. Murray B.F., Graig G.L. A cytological study of the X­ray induced cau­ liflower head and single­leaf mutation in Medicago sativa L. Can. J. Genet. Cytol. 1962;4:379­383.

35. Pashenko Z.M., Rustamova D.М. Embriology of sterile forms of alfalfa with branched raceme. Uzbek. Biological Journal. 1971;2:53­56. (in Russian)

36. Shannon S., Meeks­Wagner D.R. Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell. 1993;5(6):639­655.•DOI 10.1105/tpc.5.6.639.

37. Singer S., Sollinger J., Maki S., Fishbach J., Short B., Reinke C., Fick J., Cox L., McCall A., Mullen H. Inflorescence architecture: a developmental genetics approach. Bot. Rev. 1999;65(4):385­410. DOI 10.1007/BF02857756.

38. Sinjushin A.A. Effects of stem fasciation on inflorescence and flower morphology in legumes. Wulfenia. 2016;23:127­134.

39. Sinjushin A.A. On unification of descriptive nomenclature of inflorescences morphology for breeding of legumes. Proceedings on Applied Botany, Genetics, and Breeding. St. Petersburg, 2018;179(1): 89­102. DOI 10.30901/2227­8834­2018­1­89­102. (in Russian)

40. Sinjushin A.A., Gostimskii S.A. Genetic control of fasciation in pea (Pisum sativum L.). Rus. J. Genet. 2007;44:66:702­708. DOI 10.1134/S1022795408060100.

41. Staszewski Z. Long petiole lp mutation – a promise for seeding im­ provement of alfalfa. In: Report of the third North American Alfalfa Improvement Conference. 1986;75.

42. Tadege M., Wen J., He J., Tu H., Kwak Y., Eschstruth A., Cayrel A., Endre G., Zhao P., Chabaud M., Ratet P., Mysore K. Large­scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008;54:335­347. DOI 10.1111/j.1365­313X.2008.03418.listofm/truncatulamutants.

43. Wang H., Chen J., Wen J., Tadege M., Li G., Liu Yu., Mysore K.S., Ratet P., Chen R. Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol. 2008;146:1759­1772. DOI 10.1104/pp.108.117044.

44. Weigel D., Alvarez J., Smyth D., Yanofsky H., Meyerowitz E. LEAFY controls floral meristem identity in Arabidopsis. Cell. 1992;69: 843­859.

45. Williams L., Fletcher J.C. Stem cell regulation in the Arabidopsis shoot apical meristem. Curr. Opin. Plant Biol. 2005;8:582­586. DOI 10.1016/j.pbi.2005.09.010.

46. Yanofsky M.F. Floral meristems to floral organs: genes controlling early events in Arabidopsis flower development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1995;46:167­188. DOI 10.1146/annurev.pp.46.060.060195.001123.


Review

Views: 751


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)