1. Agil A., El-Hammadi M., Jiménez-Aranda A., Tassi M., Abdo W., Fernández-Vázquez G., Reiter R.J. Melatonin reduces hepatic mitochondrial dysfunction in diabetic obese rats. J. Pineal. Res. 2015; 59(1):70-79. https://doi.org/10.1111/jpi.12241.
2. Arendt J. Melatonin: countering chaotic time cues. Front. Endocrinol. (Lausanne). 2019;10:391. https://doi.org/10.3389/fendo.2019.00391.
3. Borodin Yu.I., Trufakin V.A., Michurina S.V., Shurlygina A.V. Structural and Temporal Organization of the Liver, Lymphatic, Immune, and Endocrine Systems in Violation of the Light Regime and Melatonin Treatement. Novosibirsk: Manuscript Publ., 2012. (in Russian)
4. ChenW.R., Yang J.Q., Liu F., Shen X.Q., ZhouY.J. Melatonin attenuates vascular calcification by activating autophagy via an AMPK/mTOR/ ULK1 signaling pathway. Exp. Cell. Res. 2020;389(1):111883. https://doi.org/10.1016/j.yexcr.2020.111883.
5. Col C., Dinler K., Hasdemir O., Buyukasik O., Bugdayci G. Oxidative stress and lipid peroxidation products: effect of pinealectomy or exogenous melatonin injections on biomarkers of tissue damage during acute pancreatitis. Hepatobiliary Pancreat. Dis. Int. 2010; 9(1):78-82. PMID: 20133234.
6. Darenskaya M.A., Kolesnikova L.I., Kolesnikov S.I. COVID-19: oxidative stress and the relevance of antioxidant therapy. Vestnik Rossijskoj Akademii Meditsynskikh Nauk = Annals of the Russian Academy of Medical Sciences. 2020;75(4):318-325. https://doi.org/10.15690/vramn1360. (in Russian)
7. Delibas N., Tuzmen N., Yonden Z., Altuntas I. Effect of functional pinealectomy on hippocampal lipid peroxidation, antioxidant enzymes and N-methyl-D-aspartate receptor subunits 2A and 2B in young and old rats. Neuro Endocrinol. Lett. 2002;23(4):345-350. PMID: 12195239.
8. El-Missiry M.A., El-Missiry Z.M.A., Othman A.I. Melatonin is a potential adjuvant to improve clinical outcomes in individuals with obesity and diabetes with coexistence of Covid-19. Eur. J. Pharmacol. 2020;882:173329. https://doi.org/10.1016/j.ejphar.2020.173329.
9. Gupta S., Haldar C. Nycthemeral variation in melatonin receptor expression in the lymphoid organs of a tropical seasonal breeder Funambulus pennanti. J. Comp. Physiol. A. 2014;200(12):1045-1055. https://doi.org/10.1007/s00359-014-0959-2.
10. Hardeland R. Melatonin and the electron transport chain. Cell. Mol. Life Sci. 2017;74(21):3883-3896. https://doi.org/10.1007/s00018-017-2615-9.
11. Hu J., Srivastava K., Wieland M., Runge A., Mogler C., Besemfelder E., Terhardt D., Vogel M.J., Cao L., Korn C., Bartels S., Thomas M., Augustin H.G. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat. Science. 2014; 343(6169):416-419. https://doi.org/10.1126/science.1244880.
12. Huo X., Wang C., Yu Z., Peng Y., Wang S., Feng S., Zhang S., Tian X., Sun C., Liu K., Deng S., Ma X. Human transporters, PEPT1/2, facilitate melatonin transportation into mitochondria of cancer cells: an implication of the therapeutic potential. J. Pineal Res. 2017;62(4): e12390. https://doi.org/10.1111/jpi.12390.
13. Ishchenko I.Y., Michurina S.V. Regional lymph nodes in the liver of rats in functional pinealectomy. Bull. Exp. Biol. Med. 2014;157(5): 671-676. https://doi.org/10.1007/s10517-014-2636-4.
14. Jing Y., Bai F., Chen H., Dong H. Melatonin prevents blood vessel loss and neurological impairment induced by spinal cord injury in rats. J. Spinal. Cord. Med. 2017;40(2):222-229. https://doi.org/10.1080/10790268.2016.1227912.
15. Jockers R., Delagrange P., Dubocovich M.L., Markus R.P., Renault N., Tosini G., Cecon E., Zlotos D.P. Update on melatonin receptors: IUPHAR Review 20. Br. J. Pharmacol. 2016;173(18):2702-2725. https://doi.org/10.1111/bph.13536.
16. Jou M.J., Peng T.I., Reiter R.J. Protective stabilization of mitochondrial permeability transition and mitochondrial oxidation during mitochondrial Ca2+ stress by melatonin’s cascade metabolites C3-OHM and AFMK in RBA1 astrocytes. J. Pineal Res. 2019;66(1):e12538. https://doi.org/10.1111/jpi.12538.
17. Li R., Toan S., Zhou H. Role of mitochondrial quality control in the pathogenesis of nonalcoholic fatty liver disease. Aging (Albany NY). 2020;12(7):6467-6485. https://doi.org/10.18632/aging.102972.
18. Michurina S.V., Ishchenko I.Yu., Arkhipov S.A., Cherepanova M.A., Vasendin D.V., Zavjalov E.L. Apoptosis in the liver of male db/db mice during the development of obesity and type 2 diabetes. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2020;24(4):435-440. https://doi.org/10.18699/VJ20.43-o.
19. Michurina S.V., Ischenko I.Yu., Arkhipov S.A., Klimontov V.V., Cherepanova M.A., Korolev M.A., Rachkovskaya L.N., Zav’yalov E.L., Konenkov V.I. Melatonin-aluminum oxide-polymethylsiloxane complex on apoptosis of liver cells in a model of obesity and type 2 diabetes mellitus. Bull. Exp. Biol. Med. 2017;164(2):165-169. https://doi.org/10.1007/s10517-017-3949-x.
20. Michurina S.V., Ishchenko I.Yu., Arkhipov S.A., Klimontov V.V., Rachkovskaya L.N., Konenkov V.I., Zavyalov E.L. Effects of melatonin, aluminum oxide, and polymethylsiloxane complex on the expression of LYVE-1 in the liver of mice with obesity and type 2 diabetes mellitus. Bull. Exp. Biol. Med. 2016;162(2):269-272. https://doi.org/10.1007/s10517-016-3592-y.
21. Michurina S.V., Shurlygina A.V., Belkin A.D., Vakulin G.M., Verbitskaia L.V., Trufakin V.A. Changes in liver and in some organs of immune system of animals exposed to twenty-four-hour illumination. Morfologiia. 2005;128(4):65-68. PMID: 16400925. (in Russian)
22. Michurina S.V., Vasendin D.V., Ishchenko I.Yu. Physiological and biological effects of melatonin: some results and prospects for the study. Rossiyskiy Fiziologicheskiy Zhurnal im. I.M. Sechenova = I.M. Sechenov Physiological Journal. 2018;104(3):257-271. (in Russian)
23. Morin L.P. Nocturnal light and nocturnal rodents: similar regulation of disparate functions? J. Biol. Rhythms. 2013;28(2):95-106. https://doi.org/10.1177/0748730413481921.
24. Motoyama S., Saito S., Alojado M.E., Itoh H., Kitamura M., Suzuki H., Saito R., Momiyama H., Nakae H., Ogawa J., Inaba H. Hydrogen peroxide induces midzonal heat shock protein 72 and apoptosis in sinusoidal endothelial cells of hypoxic rat liver. Crit. Care Med. 2000; 28(5):1509-1514. https://doi.org/10.1097/00003246-200005000-00042.
25. Motoyama S., Saito S., Saito R., Minamiya Y., Nakamura M., Okuyama M., Imano H., Ogawa J. Hydrogen peroxide-dependent declines in Bcl-2 induces apoptosis in hypoxic liver. J. Surg. Res. 2003; 110(1):211-216. https://doi.org/10.1016/s0022-4804(03)00006-4.
26. Polčic P., Mentel M. Reconstituting the mammalian apoptotic switch in yeast. Genes (Basel ). 2020;11(2):145. https://doi.org/10.3390/genes11020145.
27. Reiter R.J., Rosales-Corral S.A., Tan D.X., Alatorre-Jimenez M., Lopez C. Circadian dysregulation and melatonin rhythm suppression in the context of aging. In: Jazwinski S., Belancio V., Hill S. (Eds). Circadian Rhythms and Their Impact on Aging. (Ser. Healthy Ageing and Longevity. Vol. 7). Springer, Cham, 2017;1-25. https://doi.org/10.1007/978-3-319-64543-8_1.
28. Reiter R.J., Tan D.X., Rosales-Corral S., Galano A., Jou M.J., AcunaCastroviejo D. Melatonin mitigates mitochondrial meltdown: interactions with SIRT3. Int. J. Mol. Sci. 2018;19(8):2439. https://doi.org/10.3390/ijms19082439.
29. Reiter R.J., Tan D.X., Rosales-Corral S., Manchester L.C. The universal nature, unequal distribution and antioxidant functions of melatonin and its derivatives. Mini-Rev. Med. Chem. 2013;13(3):373-384. https://doi.org/10.2174/1389557511313030006.
30. Russart K.L.G., Nelson R.J. Light at night as an environmental endocrine disruptor. Physiol. Behav. 2018;190:82-89. https://doi.org/10.1016/j.physbeh.2017.08.029.
31. Sahna E., Parlakpinar H., Vardi N., Ciğremis Y., Acet A. Efficacy of melatonin as protectant against oxidative stress and structural changes in liver tissue in pinealectomized rats. Acta Histochem. 2004;106(5):331-336. https://doi.org/10.1016/j.acthis.2004.07.006.
32. Willis S., Day C.L., Hinds M.G., Huang D.C. The Bcl-2-regulated apoptotic pathway. J. Cell. Sci. 2003;116(Pt.20):4053-4056. https://doi.org/10.1242/jcs.00754.
33. Woolbright B.L., Jaeschke H. Xenobiotic and endobiotic mediated interactions between the cytochrome P450 system and the inflammatory response in the liver. Adv. Pharmacol. 2015;74:131-161. https://doi.org/10.1016/bs.apha.2015.04.001.