1. Adamczyk A., Mejias R., Takamiya K., Yocum J., Krasnova I.N., Caldero J., Wang T. GluA3-deficiency in mice is associated with increased social and aggressive behavior and elevated dopamine in striatum. Behav. Brain Res. 2012;229(1):265-272. https://doi.org/10.1016/j.bbr.2012.01.007.
2. Alekhina T.A., Kozhemyakina R.V. Modeling of focal seizures with automatisms in rats with pendulum movements. Bull. Exp. Biol. Med. 2019;168(2):300-303. https://doi.org/10.1007/s10517-019-04695-7.
3. Alekhina T.A., Palchikova N.A., Igonina T.N., Kuznetsova N.V. Comparative analysis of imipramine intake reactions in catatonic and wistar rats. Rossiiskii Fiziologicheskii Zhurnal im. I.M. Sechenova = Russian Journal of Physiology. 2015;101(3):249-257. (in Russian)
4. Alekhina T.A., Palchikova N.A., Kozhemyakina R.V., Prokudina O.I. The signs of destabilization in behavioral and somatovegetative parameters of rats selected for catatonia. Russ. J. Genet. Appl. Res. 2016;6(8):798-803. https://doi.org/10.1134/S2079059716080025.
5. Alekhina T.A., Prokudina O.I., Ryazanova M.A., Ukolova T.N., Barykina N.N., Kolpakov V.G. Typological characteristics of behavior in strains of rats bred for enhancement and absence of pendulum movements. Association with brain monoamines. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2007;57(3):336-343. (in Russian)
6. Alekhina T.A., Shtilman N.I., Nikulina E.M., Pavlov I.F., Barykina N.N. Aggression and learning in a strain of rats predisposed to catalepsy. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 1987;37(3):537-541. (in Russian)
7. Anderzhanova E., Kirmeier T., Wotjak C.T. Animal models in psychiatric research: the RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol. Stress. 2017;7:47-56. https://doi.org/10.1016/j.ynstr.2017.03.003.
8. Barykina N.N., Chugui V.F., Alekhina T.A., Ryazanova M.A., Ukolova T.N., Sakharov D.G., Kolpakov V.G. Learning of rats predisposed to catalepsy in Morris water test. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 2009;59(6):728-735. (in Russian)
9. Brooks-Kayal A.R., Bath K.G., Berg A.T., Galanopoulou A.S., Holmes G.L., Jensen F.E., Scharfman H.E. Issues related to symptomatic and disease-modifying treatments affecting cognitive and neuropsychiatric comorbidities of epilepsy. Epilepsia. 2013;54 (Suppl.4):44-60. https://doi.org/10.1111/epi.12298.
10. Crowley W.R., O’Connor L.H., Feder H.H. Neurotransmitter systems and social behavior. In: Balthazart J. (Ed.) Molecular and Cellular Basis of Social Behavior in Vertebrates. Advances in Comparative and Environmental Physiology. Vol. 3. Berlin; Heidelberg; Springer, 1989;161-208. https://doi.org/10.1007/978-3-642-73827-2_4.
11. Deak T., Arakawa H., Bekkedal M.Y., Panksepp J. Validation of a novel social investigation task that may dissociate social motivation from exploratory activity. Behav. Brain Res. 2009;199(2):326-333. https://doi.org/10.1016/j.bbr.2008.12.011.
12. Deb S., Brizard B.A., Limbu B. Association between epilepsy and challenging behaviour in adults with intellectual disabilities: systematic review and meta-analysis. BJPsych Open. 2020;6(5):e114. https://doi.org/10.1192/bjo.2020.96.
13. Desjardins D., Parker G., Cook L.L., Persinger M.A. Agonistic behavior in groups of limbic epileptic male rats: pattern of brain damage and moderating effects from normal rats. Brain Res. 2001;905(1-2): 26-33. https://doi.org/10.1016/S0006-8993(01)02454-4.
14. Fink M., Taylor M.A. The many varieties of catatonia. Eur. Arch. Psychiatry Clin. Neurosci. 2001;251(Suppl.1):I/8-I/13. https://doi.org/10.1007/pl00014200.
15. Fuquay J.M., Muha N., Pennington P.L., Ramsdell J.S. Domoic acid induced status epilepticus promotes aggressive behavior in rats. Physiol. Behav. 2012;105(2):315-320. https://doi.org/10.1016/j.physbeh.2011.08.013.
16. Gawel K., Gibula E., Marszalek-Grabska M., Filarowska J., Kotlinska J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents - methodological consideration. NaunynSchmiedeberg’s Arch. Pharmacol. 2019;392(1):1-18. https://doi.org/10.1007/s00210-018-1589-y.
17. Glenn M.J., Batallán Burrowes A.A., Yu W., Blackmer‐Raynolds L., Norchi A., Doak A.L. Progression of behavioral deficits during periadolescent development differs in female and male DISC1 knockout rats. Genes Brain Behav. 2021;e12741. https://doi.org/10.1111/gbb.12741.
18. Gonzalez L.E., Rujano M., Tucci S., Paredes D., Silva E., Alba G., Hernandez L. Medial prefrontal transection enhances social interaction: I: Behavioral studies. Brain Res. 2000;887(1):7-15. https://doi.org/10.1016/S0006-8993(00)02931-0.
19. Harrison F.E., Hosseini A.H., McDonald M.P. Endogenous anxiety and stress responses in water maze and Barnes maze spatial memory tasks. Behav. Brain Res. 2009;198(1):247-251. https://doi.org/10.1016/j.bbr.2008.10.015.
20. Jones C.A., Watson D.J.G., Fone K.C.F. Animal models of schizophrenia. Br. J. Pharmacol. 2011;164(4):1162-1194. https://doi.org/10.1111/j.1476-5381.2011.01386.x.
21. Kaidanovich-Beilin O., Lipina T., Vukobradovic I., Roder J., Woodgett J.R. Assessment of social interaction behaviors. J. Vis. Exp. 2011;48:e2473. https://doi.org/10.3791/2473.
22. Kiser D.P., Rivero O., Lesch K.P. Annual research review: the (epi)genetics of neurodevelopmental disorders in the era of whole‐genome sequencing - unveiling the dark matter. J. Child Psychol. Psychiatry. 2015;56(3):278-295. https://doi.org/10.1111/jcpp.12392.
23. Koolhaas J.M., Coppens C.M., de Boer S.F., Buwalda B., Meerlo P., Timmermans P.J. The resident-intruder paradigm: a standardized test for aggression, violence and social stress. J. Vis. Exp. 2013;77:e4367. https://doi.org/10.3791/4367.
24. Krueger R.F., Kotov R., Watson D., Forbes M.K., Eaton N.R., Ruggero C.J., Zimmermann J. Progress in achieving quantitative classification of psychopathology. World Psychiatry. 2018;17(3):282-293. https://doi.org/10.1002/wps.20566.
25. Li M., Zhang M. SU10. Behavioral characteristics of a DISC1 knockout rat model. Schizophr. Bull. 2017;43(Suppl.1):S164. https://doi.org/10.1093/schbul/sbx024.009.
26. McAllister K.H. D-cycloserine enhances social behaviour in individually-housed mice in the resident-intruder test. Psychopharmacology. 1994;116(3):317-325. https://doi.org/10.1016/0031-9384(86)90007-7.
27. McLntyre D.C., McLeod W.S., Anisman H. Working and reference memory in seizure-prone and seizure-resistant rats: impact of amygdala kindling. Behav. Neurosci. 2004;118(2):314-323. https://doi.org/10.1037/0735-7044.118.2.314.
28. Nam H., Clinton S.M., Jackson N.L., Kerman I.A. Learned helplessness and social avoidance in the Wistar-Kyoto rat. Front. Behav. Neurosci. 2014;8:109. https://doi.org/10.3389/fnbeh.2014.00109.
29. Nani J.V., Rodríguez B., Cruz F.C., Hayashi M.A.F. Animal models in psychiatric disorder studies. In: Tvrdá E., Yenisetti S.C. (Eds.) Animal Models in Medicine and Biology. IntechOpen, 2019. https://doi.org/10.5772/intechopen.89034.
30. Neill J.C., Barnes S., Cook S., Grayson B., Idris N.F., McLean S.L., Harte M.K. Animal models of cognitive dysfunction and negative symptoms of schizophrenia: focus on NMDA receptor antagonism. Pharmacol. Ther. 2010;128(3):419-432. https://doi.org/10.1016/j.pharmthera.2010.07.004.
31. Nelson E.E., Panksepp J. Brain substrates of infant-mother attachment: contributions of opioids, oxytocin, and norepinephrine. Neurosci. Biobehav. Rev. 1998;22(3):437-452. https://doi.org/10.1016/S0149-7634(97)00052-3.
32. Nikulina E.M., Popova N.K., Kolpakov V.G., Alekhina T.A. Brain dopaminergic system in rats with a genetic predisposition to catalepsy. Biog. Amines. 1987;4(4-6):399-406.
33. Nosek K., Dennis K., Andrus B.M., Ahmadiyeh N., Baum A.E., Woods L.C.S., Redei E.E. Context and strain-dependent behavioral response to stress. Behav. Brain Funct. 2008;4(1):1-8. https://doi.org/10.1186/1744-9081-4-23.
34. O’Tuathaigh C.M.P., Babovic D., O’Sullivan G.J., Clifford J.J., Tighe O., Croke D.T., Waddington J.L. Phenotypic characterization of spatial cognition and social behavior in mice with ‘knockout’of the schizophrenia risk gene neuregulin 1. Neuroscience. 2007;147(1): 18-27. https://doi.org/10.1016/j.neuroscience.2007.03.051.
35. Petrova E.V. Features of changes in congenital and acquired forms of behavior in rats with genetic catalepsy. Zhurnal Vysshey Nervnoy Deyatel’nosti im. I.P. Pavlova = I.P. Pavlov Journal of Higher Nervous Activity. 1990;40(3):475-480. (in Russian)
36. Plekanchuk V.S., Ryazanova M.A. Expression of glutamate receptor genes in the hippocampus and frontal cortex in GC rat strain with genetic catatonia. J. Evol. Biochem. Physiol. 2021;57(1):156-163. https://doi.org/10.1134/s0022093021010154.
37. Poletaeva I.I., Zorina Z.A. A genetic approach to the study of simple cognitive abilities in animals. Rossiyskiy Zhurnal Kognitivnoy Nauki = Russian Journal of Cognitive Science. 2014;1(3):31-55.
38. Powell C.M., Miyakawa T. Schizophrenia-relevant behavioral testing in rodent models: a uniquely human disorder? Biol. Psychiatry. 2006;59(12):1198-1207. https://doi.org/10.1016/j.biopsych.2006.05.008.
39. Ryazanova M.A., Igonina T.N., Alekhina T.A., Prokudina O.I. The increase in the proportion of nervous animals bred for catatonia: the participation of central adrenoreceptors in catatonic reactions. Russ. J. Genet. 2012;48:1141-1147. https://doi.org/10.1134/S1022795412100092.
40. Ryazanova M.A., Prokudina O.I., Plekanchuk V.S., Alekhina T.A. Expression of catecholaminergic genes in the midbrain and prepulse inhibition in rats with a genetic catatonia. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2017;21(7):798-803. https://doi.org/10.18699/VJ17.296. (in Russian)
41. Sams-Dodd F., Lipska B.K., Weinberger D.R. Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology. 1997;132(3): 303-310. https://doi.org/10.1007/s002130050349.
42. Samsom J.N., Wong A.H.C. Schizophrenia and depression co-morbidity: what we have learned from animal models. Front. Psychiatry. 2015;6:13. https://doi.org/10.3389/fpsyt.2015.00013.
43. Shevelkin A.V., Terrillion C.E., Abazyan B.N., Kajstura T.J., Jouroukhin Y.A., Rudow G.L., Pletnikov M.V. Expression of mutant DISC1 in Purkinje cells increases their spontaneous activity and impairs cognitive and social behaviors in mice. Neurobiol. Dis. 2017;103:144-153. https://doi.org/10.1016/j.nbd.2017.04.008.
44. Smolensky I.V., Zubareva O.E., Kalemenev S.V., Lavrentyeva V.V., Dyomina A.V., Karepanov A.A., Zaitsev A.V. Impairments in cognitive functions and emotional and social behaviors in a rat lithiumpilocarpine model of temporal lobe epilepsy. Behav. Brain Res. 2019;372:112044. https://doi.org/10.1016/j.bbr.2019.112044.
45. Stansley B.J., Yamamoto B.K. Behavioral impairments and serotonin reductions in rats after chronic L-dopa. Psychopharmacology. 2015;232(17):3203-3213. https://doi.org/10.1007/s00213-015-3980-4.
46. Sultana R., Lee C.C. Expression of behavioral phenotypes in genetic and environmental mouse models of schizophrenia. Front. Behav. Neurosci. 2020;14:29. https://doi.org/10.3389/fnbeh.2020.00029.
47. Timofeeva A.S. (Ed.) Genetic and Evolutionary Problems in Psychiatry. Novosibirsk: Nauka Publ., 1985. (in Russian)
48. Varlinskaya E.I., Spear L.P., Spear N.E. Acute effects of ethanol on behavior of adolescent rats: role of social context. Alcohol. Clin. Exp. Res. 2001;25(3):377-385. https://doi.org/10.1111/j.1530-0277.2001.tb02224.x.
49. Vekovischeva O.Y., Aitta‐aho T., Echenko O., Kankaanpää A., Seppälä T., Honkanen A., Korpi E.R. Reduced aggression in AMPA-type glutamate receptor GluR-A subunit-deficient mice. Genes Brain Behav. 2004;3(5):253-265. https://doi.org/10.1111/j.1601-1848.2004.00075.x.
50. Volavka J., Citrome L. Heterogeneity of violence in schizophrenia and implications for long‐term treatment. Int. J. Clin. Pract. 2008;62(8):1237-1245. https://doi.org/10.1111/j.1742-1241.2008.01797.x.
51. Wilson J.E., Niu K., Nicolson S.E., Levine S.Z., Heckers S. The diagnostic criteria and structure of catatonia. Schizophr. Res. 2015;164(1-3): 256-262. https://doi.org/10.1016/j.schres.2014.12.036.
52. Winship I.R., Dursun S.M., Baker G.B., Balista P.A., Kandratavicius L., Maia-de-Oliveira J.P., Howland J.G. An overview of animal models related to schizophrenia. Can. J. Psychiatry. 2019;64(1): 5-17. https://doi.org/10.1177/0706743718773728.
53. Yassine N., Lazaris A., Dorner-Ciossek C., Després O., Meyer L., Maitre M., Mathis C. Detecting spatial memory deficits beyond blindness in tg2576 Alzheimer mice. Neurobiol. Aging. 2013;34(3):716730. https://doi.org/10.1016/j.neurobiolaging.2012.06.016.