Preview

Vavilov Journal of Genetics and Breeding

Advanced search

Taxonomic structure of bacterial communities in sourdoughs of spontaneous fermentation

https://doi.org/10.18699/VJGB-22-47

Abstract

The article is devoted to the study of the microbiome of spontaneously fermented sourdoughs. The aim of the work was to study the influence of the technological parameters of sourdough propagations on the taxonomic structure of the microbiome of spontaneously fermented sourdoughs. Two spontaneously fermented sourdoughs were studied: dense rye sourdough and liquid rye sourdough, both prepared using the same batch of peeled rye flour. To study the taxonomic structure of the sourdough microbiome in dynamics, the method of high-throughput sequencing of 16S rRNA gene fragments of microorganisms was used. It was shown that the technological parameters of sourdough (humidity, temperature) do not affect the taxonomic composition of the microbiome of dense rye or liquid rye sourdough at the phylum/class/genus level. It was found that during the first three days of propagations, bacteria from the phyla Proteobacteria and Firmicutes dominated in the microbial community. In the phylum Proteobacteria, microorganisms from the order Enterobacterales took a large share, which persisted for three days of backslopping. The phylum Firmicutes was represented by lactic acid bacteria of the genera Weissella, Lactobacillus, Leuconostoc, Pediococcus, Lactococcus. It was established by classical microbiological methods that after a day of fermentation, the number of lactic acid bacteria cells was significantly higher in liquid rye sourdough compared to dense one. However, with further propagation of sourdoughs, the number of cells was comparable, while significant changes occurred at the level of genera and species. It was shown that as the relative number of lactic acid bacteria of the genus Lactobacillus increased, a gradual displacement of the coccal forms of Lactococcus, Leuconostoc, Weissella, Pediococcus happened. With further propagation of sourdough after 10 days, the position of the dominant groups of bacteria was occupied by representatives of the phylum Firmicutes, lactic acid bacteria of the genus Lactobacillus. The influence of the mode and parameters of the sourdough on the species composition of lactobacilli, which demonstrated a low bacterial diversity, is shown. In the first three days of propagations, lactobacilli L. curvatus, L. brevis, and Lactiplantibacillus sp. dominated in both sourdoughs. After a month of backslopping, Fructilactobacillus sanfranciscensis and Companilactobacillus sp. dominated in dense rye sourdough, and L. pontis dominated in liquid rye sourdough.

About the Authors

V. K. Khlestkin
All-Russian Research Institute of Genetics and Breeding of Farm Animals – Branch of L.K. Ernst Federal Research Center for Animal Husbandry
Russian Federation

Pushkin, St. Petersburg



M. N. Lockachuk
Saint-Petersburg Brunch of the Scientific Research Institute for the Baking Industry
Russian Federation

Pushkin, St. Petersburg



O. A. Savkina
Saint-Petersburg Brunch of the Scientific Research Institute for the Baking Industry
Russian Federation

Pushkin, St. Petersburg



L. I. Kuznetsova
Saint-Petersburg Brunch of the Scientific Research Institute for the Baking Industry
Russian Federation

Pushkin, St. Petersburg



E. N. Pavlovskaya
Saint-Petersburg Brunch of the Scientific Research Institute for the Baking Industry
Russian Federation

Pushkin, St. Petersburg



O. I. Parakhina
Saint-Petersburg Brunch of the Scientific Research Institute for the Baking Industry
Russian Federation

Pushkin, St. Petersburg



References

1. Auerman L.Ya. Technology of Bakery Production. Saint-Petersburg, Professiya Publ., 2009. (in Russian)

2. Baek H.W., Bae J.H., Lee Y.G., Kim S.A., Min W., Shim S., Han N.S., Seo J.Н. Dynamic interactions of lactic acid bacteria in Korean sourdough during back-slopping process. J. Appl. Microbiol. 2021; 131(5):2325-2335. DOI 10.1111/jam.15097.

3. Bates S.T., Berg-Lyons D., Caporaso J.G., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil. ISME J. 2010;5:908-917. DOI 10.1038/ismej.2010.171.

4. Bӧcker G., Stolz P., Hammes W.P. Neue erkenntnisse zum okosystem sauerteig und zur physiologie der sauerteigtypischen stamme Lactobacillus sanfrancisco und Lactobacillus pontis. Getreide Mehl. und Brot. 1995;49:370-374.

5. Bolger A.M., Lohse M., Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114-2120. DOI 10.1093/bioinformatics/btu170.

6. Boreczek J., Litwinek D., Żylińska-Urban J., Izak D., Buksa K., Gawor J., Gromadka R., Bardowski J.K., Kowalczyk M. Bacterial community dynamics in spontaneous sourdoughs made from wheat, spelt, and rye wholemeal flour. MicrobiologyOpen. 2020;9(4):1-13. DOI 10.1002/mbo3.1009.

7. Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierer N., Peña A.G., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. QIIME allows analysis of highthroughput community sequencing data. Nat. Methods. 2010; 7(5):335-336. DOI 10.1038/nmeth.f.303.

8. De Vuyst L., Neysens P. The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci. Technol. 2005;16(1-3): 43-56. DOI 10.1016/j.tifs.2004.02.012.

9. De Vuyst L., Van Kerrebroeck S., Leroy F. Microbial ecology and process technology of sourdough fermentation. Adv. Appl. Microbiol. 2017;100:49-160. DOI 10.1016/bs.aambs.2017.02.003.

10. Ercolini D., Pontonio E., De Filippis F., Minervini F., La Storia A., Gobbetti M., Di Cagno R. Microbial ecology dynamics during rye and wheat sourdough preparation. Appl. Environ. Microbiol. 2013; 79(24):7827-7836. DOI 10.1128/AEM.02955-13.

11. Gänzle M., Ehmann M.R., Hammes W. Modeling of growth of Lactobacillus sanfranciscensis and Candida milleri in response to process parameters of sourdough fermentation. Appl. Environ. Microbiol. 1998;64(7):2616-2623. DOI 10.1128/AEM.64.7.2616-2623.1998.

12. Hammes W.P., Brandt M.J., Francis K.L., Rosenheim J. Microbial ecology of cereal fermentations. Trends Food Sci. Technol. 2005; 16(1-3):4-11. DOI 10.1016/j.tifs.2004.02.010.

13. Kosovan A.P. (Ed.). Collection of Modern Bakery Technologies. Moscow, 2008. (in Russian)

14. Kuznetsova L.I., Parakhina O.A., Savkina O.A., Burykina M.S. Starting compositions of microorganisms for sourdoughs. Khlebopekarnyy i Konditerskiy Forum = Bakery and Confectionery Forum. 2021; 49:54-57. (in Russian)

15. Landis E.A., Oliverio A.M., McKenney E.A., Nichols L.M., Kfoury N., Biango-Daniels M., Shell L.K., Madden A.A., Shapiro L., Sakunala S., Drake K., Robbat A., Booker M., Dunn R.R., Fierer N., Wolfe B.E. The diversity and function of sourdough starter microbiomes. Elife. 2021;10:e61644. DOI 10.7554/eLife.61644.

16. Lokachuk M.N., Khlestkin V.K., Savkina O.A., Kuznetsova L.I., Pavlovskaya E.N. Changes in the microbiota of dense rye sourdough during long-term propagation. Khleboprodukty = Bread Products. 2020;11:33-37. DOI 10.32462/0235-2508-2020-29-11-33-37. (in Russian)

17. Menezes L.A.A., Sardaro M.L.S., Duarte R.T.D., Mazzon R.R., Neviani E., Gatti М., De Dea Lindner J. Sourdough bacterial dynamics revealed by metagenomic analysis in Brazil. Food Microbiol. 2020;85:103302. DOI 10.1016/j.fm.2019.103302.

18. Meroth C.B., Hammes W.P., Hertel C. Monitoring the bacterial population dynamics in sourdough fermentation processes by using PCRdenaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 2003;69(1):475-482. DOI 10.1128/AEM.69.1.475-482.2003.

19. Minervini F., Lattanzi A., De Angelis M., Di Cagno R., Gobbetti M. Influence of artisan bakery- or laboratory-propagated sourdoughs on the diversity of lactic acid bacterium and yeast microbiotas. Appl. Environ. Microbiol. 2012;78(15):5328-5340. DOI 10.1128/AEM.00572-12.

20. Müller M., Wolfrum G., Stolz P., Ehrmann M., Vogel R. Monitoring the growth of lactobacillus species during rye flour fermentation. Food Microbiol. 2001;18:217-227. DOI 10.1006/fmic.2000.0394.

21. Oshiro M., Tanaka M., Zendo T., Nakayama J. Impact of pH on succession of sourdough lactic acid bacteria communities and their fermentation properties. Biosci. Microbiota Food Health. 2020;39(3): 152-159. DOI 10.12938/bmfh.2019-038.

22. Picozzi C., Gallina S., Dell Fera T., Foschino R. Comparison of cultural media for the enumeration of sourdough lactic acid bacteria. Ann. Microbiol. 2005;55(4):317-320.

23. Puchkova L.I. Laboratory Workshop on the Technology of Bakery Production. Saint-Petersburg: GIORD Publ., 2004. (in Russian)

24. Rizzello C.G., Cavoski I., Turk J., Ercolini D., Nionelli L., Pontonio E., De Angelis M., De Filippis F., Gobbetti M., Di Cagno R. Organic cultivation of Triticum turgidum subsp. durum is reflected in the flour-sourdough fermentation-bread axis. Appl. Environ. Microbiol. 2015;81(9):3192-3204. DOI 10.1128/AEM.04161-14.

25. Robert H., Gabriel V., Fontagné-Faucher C. Biodiversity of lactic acid bacteria in French wheat sourdough as determined by molecular characterization using species-specific. Int. J. Food Microbiol. 2009; 135(1):53-59. DOI 10.1016/j.ijfoodmicro.2009.07.006.

26. Rogalski E., Ehrmann M.A., Vogel R.F. Role of Kazachstania humilis and Saccharomyces cerevisiae in the strain-specific assertiveness of Fructilactobacillus sanfranciscensis strains in rye sourdough. Eur. Food Res. Technol. 2020;9:1817-1827. DOI 10.1007/s00217-020-03535-7.

27. Settanni L., Ventimiglia G., Alfonzo A., Corona O. An integrated technological approach to the selection of lactic acid bacteria of flour origin for sourdough production. Food Res. Int. 2013;54(2):1569- 1578. DOI 10.1016/j.foodres.2013.10.017.

28. Siragusa S., Di Cagno R., Ercolini D., Minervini F., Gobbetti M., De Angelis M. Taxonomic structure and monitoring of the dominant population of lactic acid bacteria during wheat flour sourdough type I propagation using Lactobacillus sanfranciscensis starters. Appl. Environ. Microbiol. 2009;75(4):1099-1109. DOI 10.1128/AEM.01524-08.

29. Van der Meulen R., Scheirlinck I., Van Schoor A., Huys G., Vancanneyt M., Vandamme P., De Vuyst L. Population dynamics and metabolite target analysis during laboratory fermentations of wheat and spelt sourdoughs. Appl. Environ. Microbiol. 2007;73(15):4741- 4750. DOI 10.1128/AEM.00315-07.

30. Van Kerrebroeck S., Maes D., De Vuyst L. Sourdoughs as a function of their species diversity and process conditions, a meta-analysis. Trends Food Sci. Technol. 2017;68:152-159. DOI 10.1016/j.tifs.2017.08.016.

31. Viiard E., Bessmeltseva M., Simm J., Talve T., Aaspõllu A., Paalme T. Diversity and stability of lactic acid bacteria in rye sourdoughs of four bakeries with different propagation parameters. PLoS One. 2016;11(2):e0148325. DOI 10.1371/journal.pone.0148325.

32. Vogel R.F., Pavlovic M., Ehrmann M.A., Wiezer A., Liesegang H., Offschanka S., Voget S., Angelov A., Böcker G., Lieb W. Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb. Cell Factories. 2011;10(Suppl. 1): 1-11. DOI 10.1186/1475-2859-10-S1-S6.

33. Vogelmann S.A., Hertel C. Impact of ecological factors on the stability of microbial associations in sourdough fermentation. Food Microbiol. 2011;28(3):583-589. DOI 10.1016/j.fm.2010.11.010.

34. Weckx S., Van der Meulen R., Maes D., Scheirlinck I., Huys G., Vandamme P. Lactic acid bacteria community dynamics and metabolite production of rye sourdough fermentations share characteristics of wheat and spelt sourdough fermentations. Food Microbiol. 2010; 27(8):1000-1008. DOI 10.1016/j.fm.2010.06.005.


Review

Views: 818


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2500-3259 (Online)