Пребридинговые исследования устойчивой к листовой ржавчине Triticum aestivum/T. timopheevii линии Л624
https://doi.org/10.18699/VJGB-23-73
Аннотация
Вид Triticum timopheevii Zhuk. привлекает внимание селекционеров мягкой пшеницы высоким иммунитетом к возбудителю листовой ржавчины. Однако интрогрессии от этого вида в T. aestivum L. мало используются в практической селекции. В представленном исследовании изучена агрономическая ценность T. aestivum/T. timopheevii линии Л624 по сравнению с родительскими сортами Саратовская 68, Добрыня и сортом-стандартом Фаворит в течение 2017–2022 гг. Интрогрессии от T. timopheevii у Л624 выявлены с помощью метода FISH с зондами pSc119.2, pAs1 и Spelt1, а также микросателлитных маркеров Xgwm312, Xgpw4480 и Xksum73. Обнаружены транслокации 2AS.2AL-2AtL и в длинном плече хромосомы 2D. Линия Л624 высокоустойчива к Puccinia triticina как на фоне естественной эпифитотии, так и в лабораторных условиях. С использованием ПЦР-анализа с ДНК-маркером гена LrTt1 (Xgwm312) установлена его неидентичность Lr-гену(ам) у ли нии Л624. По данным пятилетнего изучения, урожайность зерна у Л624 была в среднем выше, чем у сортов Фаворит и Добрыня, но ниже, чем у сорта Саратовская 68. По массе 1000 зерен Л624 уступала реципиентам и была одного уровня с сортом-стандартом Фаворит. Интрогрессии от T. timopheevii у Л624 увеличили содержание белка в зерне по сравнению с сортами Саратовская 68 и Фаворит, но с сортом Добрыня оно было на одном уровне. В целом по показателям качества муки и хлеба линия Л624 не уступила сортам-реципиентам, а по объему и пористости хлеба превзошла Саратовскую 68. В то же время Л624 превышала сорт-стандарт Фаворит по упругости теста, отношению упругости теста к растяжимости и силе муки. Таким образом, полученные результаты позволяют сделать предположение, что интрогрессии в хромосомах 2А и 2D у линии Л624 не ухудшают хлебопекарные свойства.
Об авторах
С. Н. СибикеевРоссия
Саратов
И. Г. Адонина
Россия
Новосибирск
А. Е. Дружин
Россия
Саратов
О. А. Баранова
Россия
Пушкин, Санкт-Петербург
Список литературы
1. Adonina I.G., Timonova E.M., Salina E.A. Introgressive hybridization of common wheat: results and prospects. Russ. J. Genet. 2021; 57(4):390-407. DOI: 10.1134/S1022795421030029.
2. Allard R.W., Shands R.G. Inheritance of resistance to stem rust and powdery mildew in cytologically stable spring wheats derived from Triticum timopheevii. Phytopathology. 1954;44:266-274.
3. Badaeva E.D., Budashkina E.B., Bilinskaya E.N., Pukhalskiy V.A. Intergenomic сhromosome substitutions in wheat interspecific hybrids and their use in the development of a genetic nomenclature of Triticum timopheevii chromosomes. Russ. J. Genet. 2010;46(7): 769-785. DOI: 10.1134/S102279541007001X.
4. Badaeva E.D., Ruban A.S., Aliyeva-Schnorr L., Municio C., Hesse S., Houben A. In situ hybridization to plant chromosomes. In: Liehr T. (Ed.). Fluorescence in Situ Hybridization (FISH). Berlin; Heidelberg, Germany: Springer, 2017;477-494. DOI: 10.1007/978-3-66252959-1_49.
5. Baranova O.A., Sibikeev S.N., Druzhin A.E., Sozina I.D. Loss of effectiveness of stem rust resistance genes Sr25 and Sr6Agi in the Lower Volga region. Vestnik Zashchity Rasteniy = Plant Protection News. 2021;104(2):105-112. DOI: 10.31993/2308-6459-2021-1042-14994. (in Russian)
6. Bedbrook R.J., Jones J., O’Dell M., Thompson R.J., Flavell R.B. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980;19(2):545-560. DOI: 10.1016/0092-8674(80)90529-2.
7. Brown-Guedira G.L., Singh S., Fritz A.K. Performance and mapping of leaf rust resistance transferred to wheat from Triticum timopheevii subsp. armeniacum. Phytopathology. 2003;93(7):784-789. DOI: 10.1094/PHYTO.2003.93.7.784.
8. Budashkina E.B., Kalinina N.P. Development and genetic analysis of common wheat introgressive lines resistant to leaf rust. Acta Phytopathol. Entomol. Hung. 2001;36(1-2):61-65. DOI: 10.1556/aphyt.36.2001.1-2.8.
9. Gultyaeva E.I., Orina A.S., Gannibal P.B., Mitrofanova O.P., Odintsova I.G., Laikova L.I. The effectiveness of molecular markers for the identication of Lr28, Lr35 and Lr47 genes in common wheat. Russ. J. Genet. 2014;50(2):131-139. DOI: 10.7868/S00166758140 20064.
10. Gultyaeva E.I., Sibikeev S.N., Druzhin A.E., Shaydayuk E.L. Enlargement of genetic diversity of spring bread wheat resistance to leaf rust (Puccinia triticina Erics.) in Lower Volga region. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2020;55(1): 27-44. DOI: 10.15389/agrobiology.2020.1.27rus. (in Russian)
11. Gultyaeva E.I., Shaydayuk E.L., Gannibal P.B. Leaf rust resistance genes in wheat cultivars registered in Russia and their influence on adaptation processes in pathogen populations. Agriculture. 2021; 11(4):319. DOI: 10.3390/agriculture11040319.
12. Dorofeev V.F., Filatenko A.A., Migushova E.F., Udachin R.A., Yakubtsiner M.M. Cultural Flora of the USSR. Vol. 1. Wheat. Leningrad, 1979. (in Russian)
13. Jiang J., Gill B.S. Different species-specific chromosome translocation in Triticum timopheevii and T. turgidum support diphyletic origin of polyploid wheats. Chromosome Res. 1994;2(1):59-64. DOI: 10.1007/BF01539455.
14. Jørgensen J.H., Jensen C.J. Genes for resistance to wheat powdery mildew in derivatives of Triticum timopheevii and T. carthlicum. Euphytica. 1972;21:121-128. DOI: 10.1007/BF00040557.
15. Kozlovskaya V.F., Grigoryeva L.P., Shatilova N.V. Using interspecific hybridization for the development of new sources for stem rust resistance of wheat. Sel’skokhozyaystvennaya Biologiya = Agricultural Biology. 1990;1:65-71. (in Russian)
16. Laikova L.I., Arbuzova V.S., Efremova T.T., Popova O.M., Ermakova M.F. Estimation productivity and quality of the grain in immune introgressive lines of soft wheat of Saratovskaya 29 variety. Selskokhozyaystvennaya Biologiya = Agricultural Biology. 2007;42(5):7585. (in Russian)
17. Laikova L.I., Belan I.A., Badaeva E.D., Rosseeva L.P., Shepelev S.S., Shumny V.K., Pershina L.A. Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material fron syntetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss. Russ. J. Genet. 2013;49(1):89-97. DOI: 10.1134/s1022795413010067.
18. Leonova I.N. Influence of alien genetic material on the manifestation of agronomically important traits of common wheat (T. aestivum L.). Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Jour nal of Genetics and Breeding. 2018;22(3):321-328. DOI: 10.18699/VJ18.367. (in Russian)
19. Leonova I.N., Borner A., Budashkina E.B., Kalinina N.P., Unger O., Roder M.S., Salina E.A. Identification of microsatellite markers for a leaf rust resistance gene introgressed into common wheat from Triticum timopheevii. Plant Breed. 2004;123(1):93-95. DOI: 10.1046/j.0179-9541.2003.00906.x.
20. Leonova I.N., Laikova L.I., Popova O.M., Unger O., Borner A., Roder M.S. Detection of quantitative trait loci for leaf rust resistance in wheat – T. timopheevii/T. tauschii introgression lines. Euphytica. 2007;155:79-87. DOI: 10.1007/s10681-006-9303-4.
21. Leonova I.N., Kalinina N.P., Budashkina E.B., Röder M.S. Genetic analysis and localization of loci controlling leaf rust resistance of Triticum aestivum × Triticum timopheevii introgression lines. Russ. J. Genet. 2008;44(12):1431-1437. DOI: 10.1134/S1022795408120077.
22. Leonova I.N., Budashkina E.B, Flath K., Weidner A., Börner A., Röder M.S. Microsatellite mapping of a leaf rust resistance gene transferred to common wheat from Triticum timopheevii. Cereal Res. Commun. 2010;38(2):212-220. DOI: 10.1556/CRC.38.2010.2.7.
23. Leonova I.N., Budashkina E.B., Kalinina N.P., Röder M.S., Börner A., Salina E.A. Triticum aestivum−Triticum timopheevii introgression lines as a source of pathogen resistance genes. Czech J. Genet. Plant Breed. 2011;47:S49-S55.
24. Mains E.B., Jackson H.S. Physiological specialization in the leaf rust of wheat Puccinia triticina Erikss. Phytopathology. 1926;16:89-120.
25. Martynov S.P., Musin N.N., Kulagina T.V. The Agros software package for statistical biometric and genetic analysis, version 2.10. Russian Academy of Agricultural Sciences. Department of Statistical Analysis, 2000. (in Russian)
26. McIntosh R.A., Wellings C.R., Park R.F. Wheat Rusts. An Atlas of Resistance Genes. Springer Dordrecht, 1995.
27. McIntosh R.A., Yamazaki Y., Dubcovsky J., Rogers W.J., Morris C., Appels R., Xia X.C. Catalogue of gene symbols for wheat. In: Proceedings of the 12th International Wheat Genetics Symposium; 8-13 September 2013; Yokohama, Japan. Springer Open, 2013. https://host170.sedici.unlp.edu.ar/server/api/core/bitstreams/bc9e 00ea-92ac-4d4a-8df7-a9f51111a8e0/content.
28. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of Gene Symbols for Wheat: 2018 Supplement. Annu. Wheat Newsl. 2018;64:73-93.
29. McIntosh R.A., Dubcovsky J., Rogers W.J., Xia X.C., Raupp W.J. Catalogue of Gene Symbols for Wheat: 2022 Supplement. Annu. Wheat Newsl. 2022;68:68-82.
30. Peterson R.F., Campbell A.B., Hannah A.E. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 1948;26(5):496-500. DOI: 10.1139/cjr48c-033.
31. Plaschke J., Ganal M.W., Röder M.S. Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor. Appl. Genet. 1995;91(6-7):1001-1007. DOI: 10.1007/BF00223912.
32. Prins R., Marais G.F., Janse B.J.H., Pretorius Z.A., Marais A.S. A physical map of the Thinopyrum-derived Lr19 translocation. Genome. 1996;39(5):1013-1019. DOI: 10.1139/g96-126.
33. Rayburn A.L., Gill B.S. Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol. Biol. Report. 1986;4: 104-109. DOI: 10.1007/BF02732107.
34. Roelfs A.P., Singh R.P., Saaru E.E. Rust Diseases of Wheat: Concepts and Methods of Disease Management. Mexico, D.F.: CIMMYT, 1992.
35. Röder M.S., Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics. 1998; 149(4):2007-2023. DOI: 10.1093/genetics/149.4.2007.
36. Salina E.A., Lim Y.K., Badaeva E.D., Scherban A.B., Adonina I.G., Amosova A.V., Samatadze T.E., Vatolina T.Y., Zoshchuk S.A., Leitch A. Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome. 2006;49(8):1023-1035. DOI: 10.1139/g06-050.
37. Salina E.A., Pestsova E.G., Vershinin A.V. “Spelt1” a novel family of tandemly repeated DNA in cereals. Russ. J. Genet. 1997;33(4): 352-357.
38. Schneider A., Linc G., Molnar-Lang M. Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed. 2003;122(5):396-400. DOI: 10.1046/j.1439-0523.2003.00891.x.
39. Sibikeev S.N., Krupnov V.A., Voronina S.A., Elesin V.A. First report of leaf rust pathotypes virulent to highly effective Lr-genes transferred from Agropyron species to bread wheat. Plant Breed. 1996;115(4): 276-278. DOI: 10.1111/j.1439-0523.1996.tb00917.x.
40. Sibikeev S.N., Druzhin A.E., Badaeva E.D., Shishkina A.A., Dragovich A.Y., Gultyaeva E.I., Kroupin P.Y., Karlov G.I., Khuat T.M., Divashuk M.G. Comparative analysis of Agropyron intermedium (Host) Beauv 6Agi and 6Agi2 chromosomes in bread wheat cultivars and lines with wheat–wheatgrass substitutions. Russ. J. Genet. 2017;53(3):314-324. DOI: 10.1134/S1022795417030115.
41. Sibikeev S.N., Konkova E.A., Salmova M.F. Characteristic of the bread wheat leaf rust pathogen virulence in the Saratov region conditions. Agrarnyy Nautchnyy Zhurnal = Agrarian Scientific Journal. 2020;9:40-44. DOI: 10.28983/asj.y2020i9pp40-44. (in Russian)
42. Singh A.K., Sharma J.B., Vinod, Singh P.K., Singh A., Mallick N. Genetics and mapping of a new leaf rust resistance gene in Triticum aestivum L. × Triticum timopheevii Zhuk. derivative ‘Selection G12’. J. Genet. 2017;96:291-297. DOI: 10.1007/s12041-017-0760-4.
43. Skurygina N.A. Highly effective genes for resistance to the popu lation of leaf rust and powdery mildew in bread wheat lines derived from T. timopheevii Zhuk., and their identification. Trudy po Prikladnoy Botanike, Genetike i Selektsii = Proceedings on Applied Botany, Genetics, and Breeding. 1984;85:5-13. (in Russian)
44. Timonova E.M., Leonova I.N., Belan I.A., Rosseeva L.P., Salina E.A. Effect of certain chromosome regions of Triticum timo pheevii on the formation on pest resistance and quantative traits in common wheat. Vavilovskii Zhurnal Genetiki i Selektsii = Vavilov Journal of Genetics and Breeding. 2012;16(1):142-159. (in Russian)
45. Tomar S.M.S., Joshi B.C., Kochumadhavan M., Shrivastava K.D. Transfer of leaf rust resistance into bred wheat from Triticum timopheevii Zhuk. Current Sci. 1988;57(1):17-19.
46. Yu J.-K., Dake T.M., Singh S., Benscher D., Li W., Gill B., Sorrells M.E. Development and mapping of EST-derived simple sequence repeat markers for hexaploid wheat. Genome. 2004;47(5):805-818. DOI: 10.1139/G04-057.
47. Zhirov E.G., Ternovskaya T.K. Genome engineering in wheat. Vestnik Selskokhozyaystvennoy Nauki = Herald of Agricultural Sciences.1984;10:58-66. (in Russian)